Direct Research Journal of Engineering and Information Technology

Vol. 13(2), Pp. 12-36, June 2025, Author(s) retain the copyright of this article This article is published under the terms of the Creative Commons Attribution License 4.0.

Research Article ISSN: 2354-4155

https://journals.directresearchpublisher.org/index.php/drjeit; https://www.ajol.info/index.php/drjeit

Formulation and Evaluation of a Natural Cleaning Agent from Citrus Lemon Peel Extract, Eggshell, and Coconut Shell: A Comparative Study with Commercial Cleaning Product

Akpolome, Daniel*, Raji, Wuraola, A., Akpobi, Elohor Diamond, and Ogbeide, Samuel E.

Department of Chemical and Petroleum Engineering, Igbinedion University Okada, Edo State, Nigeria. *Corresponding author email: akpolome.daniel@iuokade.edu.ng; https://orcid.org/0009-0001-3491-4148 Tel: +2347038137711

ABSTRACT

Growing global concern over the environmental and health impacts of synthetic cleaning agents, this study investigates the formulation and characterization of ecofriendly alternatives using agro-waste-derived materials Citrus limon (lemon) peel extract, coconut shell, and eggshell. Lemon peel essential oil was extracted via Soxhlet using ethanol, while coconut and eggshell powders (≤1 mm) were prepared through cleaning, drying, and pulverization. Three bio-based formulations Sample A (lemon + coconut shell), Sample B (lemon only), and Sample C (lemon + eggshell) were developed and compared to a commercial synthetic cleaner (Sample D). Standard surfactants and additives were incorporated to enhance performance. Physicochemical properties and structural functionality were evaluated using Fourier Transform Infrared (FTIR) spectroscopy using a Cary 630 FTIR Spectrometer across 4000–400 cm⁻¹. Sample B exhibited mildly acidic pH (3.88), moderate conductivity (926 μS/cm), and acceptable hardness and chloride levels, confirming its mild cleaning suitability. Sample C showed superior deep-cleaning performance with the highest oil solubility (30%), lowest surface tension (18.25 mN/m), and highest total solids (54.61 wt. %). Sample A demonstrated the best water solubility (92%) and prolonged froth stability (4.17 hours), ideal for surface applications. While the synthetic cleaner (Sample D) performed better in oil solubility (45%) and froth stability (4.56 hours), its lower water solubility (41%) and higher ecological risk highlight the advantages of the bio-based options. FTIR spectra confirmed the presence of key functional groups (O-H, C=O, C=C), supporting the presence of bioactive compounds with antimicrobial and surfactant properties. The findings underscore the potential of agro-waste-based formulations as sustainable, non-toxic alternatives to conventional cleaners.

Keywords: Citrus limon peel, eggshell, coconut shell, surface tension, froth stability, solubility

Natural Cleaning Agents from Waste: A Sustainable Alternative to Synthetics Akpolome et al., 2025 | Igbinedion University, Nigeria Research Focus Formulated eco-friendly cleaning agents using: Lemon pele extract Coconut shell Compared to:Commercial sleaning product Key Results Form Grability Form Key Results Form Grability Form Sample Lemon + Eggshell Lemon + Coconut shell Lemon 1 + Coconut shell Lemon + Coconut shell Lemon 1 + Coconut shell Lemon + Cocon

Article information Received 2 March 2025; Accepted 3 May 2025;

Published 25 June 2025 DOI: https://doi.org/10.26765/DRJEIT91752622

Citation: Akpolome, D., Raji, W. A., Akpobi, E. D., and Ogbeide, S. E. (2025). Formulation and Evaluation of a Natural Cleaning Agent from Citrus Lemon Peel Extract, Eggshell, and Coconut Shell: A Comparative Study with Commercial Cleaning Product. Direct Research Journal of Engineering and Information Technology Vol. 13(2), Pp. 12-36. This article is published under the terms of the Creative Commons Attribution License 4.0.

INTRODUCTION

The global rise in environmental consciousness, as well as worries about the public health risks connected with synthetic chemicals has increased demand for sustainable alternatives in a variety of sectors, including the cleaning business. Conventional cleaning products frequently contain petrochemical-based surfactants, synthetic fragrances, dyes, and preservatives, which are not only

persistent in the environment but also pose serious health risks to vulnerable populations such as children, the elderly, and people with respiratory conditions (Aydin et al., 2016; Arif et al., 2025). Inadequate wastewater treatment and incorrect disposal techniques lead to environmental deterioration by contaminating water and soil and emitting toxic airborne chemicals (Anderson et al.,

2002; Chan et al., 2024). Several studies have revealed the negative environmental and health effects of synthetic cleaning chemicals. In aquatic environments, these chemicals diminish oxygen solubility, disturb microbial communities, and introduce hazardous substances such synthetic dyes, which are resistant to degradation and damaging to aquatic life (Chan et al., 2024). Leaching and discharge from home and industrial waste in soil can change essential physicochemical qualities, stunt plant growth, and jeopardize microbial biodiversity (Anderson et al., 2002). Furthermore, volatile organic compounds (VOCs) found in cleaning chemicals contribute significantly to indoor air pollution and can react to generate secondary pollutants, raising the risk of respiratory disease in poorly ventilated spaces (Jha and Jha, 2024).

The health risks linked with synthetic cleaning solutions range from cutaneous irritations and respiratory problems to endocrine disruption and probable carcinogenicity. Common chemicals like phthalates, parabens, and formaldehyde-releasing preservatives have been related to hormone abnormalities and reproductive issues (Wirtu, Occupational exposure to industrial-grade chemicals, particularly among janitorial workers and rural communities, can increase the risk of chronic illnesses such as respiratory disorders and cancer (Santos et al., 2025). These burdens frequently fall disproportionately on disadvantaged or low-income populations, which lack access to essential health facilities, environmental safeguards, and regulatory monitoring, exacerbating already existing socioeconomic inequities (Santos et al., 2025).

Amid increased concern, current attention has shifted to biodegradable, non-toxic alternatives produced from agricultural byproducts and plant-based waste. In accordance with circular economy concepts, these materials provide a long-term, cost-effective, and scalable solution to environmental and public health issues (Liu et al., 2023; Munir et al., 2025). Notably, byproducts such as citrus peels, eggshells, and coconut shells, which were formerly deemed garbage, are now acknowledged for their cleaning characteristics. Citrus peel extracts, high in limonene, citric acid, and flavonoids, have strong antibacterial, deodorizing, and degreasing properties (Antonio et al., 2024). Eggshell powder, which is mostly calcium carbonate, has mild abrasiveness and pH buffering properties (Diningsih and Rohmawati, 2022). Meanwhile, activated carbon derived from coconut shells shows excellent adsorptive properties for organic wastes and smells (Ahmad et al., 2020).

Empirical evidence confirms the efficacy and biocompatibility of these bio-based medicines. For example, Andreotti et al. (2021a) found that plant-based cleaning formulations had much lower ocular toxicity than synthetic chemicals, highlighting their potential in clinical and home settings. Furthermore, economic evaluations emphasize the advantages of green cleaning chemicals in institutional settings such as hospitals and schools,

claiming fewer absenteeism, improved indoor air quality, and cheaper healthcare expenditures (Ashkin, 2008). On a macroeconomic level, locally sourced bio-cleaners may reduce reliance on imported petrochemicals and help rural agricultural economies.

However, commercialization and widespread acceptance of bio-cleaners are still limited due to a number These include formulation efficacy of obstacles. inconsistencies, low consumer awareness, and insufficient comparative research comparing the performance of biobased versus synthetic formulations on critical cleaning parameters such as foamability, emulsification, oil solubility, and environmental toxicity. Most importantly, the possible synergistic effects of combining different biowaste-derived compounds are understudied, particularly in formulations designed for a variety of home and industrial applications. While the individual qualities of citrus peel, eggshell, and coconut shell have been documented, there has been little investigation into how they operate together as a coherent, useful cleaning agent. Furthermore, few research compare these natural formulations conventional synthetic cleaners usina defined physicochemical and effectiveness parameters. This study aims to overcome these gaps by creating and testing a biobased multipurpose cleaning agent made from citrus limon peel extract, eggshell powder, and coconut shell. The fundamental objectives of this research are to formulate a bio-based cleaning agent derived from lemon peel extract, eggshell powder, and coconut shell. The study aim is to examine the formulation physicochemical properties such as pH, foamability, moisture content, emulsification, and oil solubility and compare its cleaning performance to that of a conventional synthetic cleaner.

MATERIALS AND METHODS

Research design

This study employed an applied experimental research methodology combining formulation science, process engineering and analytical characterization. Sequential phases included raw-material collection, sample preparation, ethanol Soxhlet extraction of lemon-peel bioactives, formulation of two bio-derived cleaning agents (eggshell-based and coconut-shell-based), and a battery of physicochemical performance tests benchmarked against a commercial product.

Sample collection

Fresh lemon fruits (Citrus limon), discarded hen eggshells and coconut shells were sourced from local produce vendors in Warri, Delta Stare, Nigeria. All raw materials were transported in clean, food-grade containers and processed within 24 h of collection to minimize biochemical degradation.

Sample preparation

Lemon fruits

Each of the lemon fruits were carefully washed in order to remove any trace of dust/dirt from them and rinse with water. The lemon fruits were further rinse with distilled water, allow to drip water and the lemon fruit were peeled into a clean bowl (Figure 1).

Citrus lemon

Citrus lemon peel

Figure 1: Citrus lemon Fruits and Citrus lemon peel

Extraction method

Soxhlet extraction method developed by Franz von Soxhlet, (1879) was use in the extraction of oil from the citrus lemon peel (ethanol as base solvent). The experiment was performed in a 1000ml Soxhlet apparatus using ethanol as an extraction solvent. The setup consists of a reflux condenser, thimble, distillation flask, heating mantle, and a retort stand. The solvent (ethanol) was heated to evaporate, travelled up a distillation arm, and flooded into the thimble chamber, housing the solid sample tied in a sack. The condenser ensures that the solvent vapour cools and drips back into the chamber housing the solid material. The chamber, therefore, slowly fills with warm solvent and dissolves the oil in the solid sample. When the Soxhlet chamber was almost full with the ethanol, it emptied by the siphon. The solvent was returned to the distillation flask with the dissolved oil from the sample. The thimble ensures that the rapid motion of the solvent does not transport any solid material to the still pot. This cycle was allowed to repeat many times over hours. After dewaxing, the sample was oven-dried at 60°C for 3 hours and kept in a bottle for the next stage of operation.

Eggshell

The eggshell after collection were immediately rinse with clean water, air dry for one week and crush to power with a grinding machine. The power eggshell were sieved with a 1mm sieve filter into a clean container, cover with a led

and properly labelled (Figure 2).

Figure 2: Egg Shell and grounded Egg shell

Coconut shell

The coconut shell were air dry for two weeks, crush with a grinding machine and sieved with a 1mm sieve filter into a clean bowl, covered and labelled properly (Figure 3).

Figure 3: Coconut shell fine sieved particles

Fourier Transform Infrared (FTIR) Spectroscopy Analysis

FTIR analysis was conducted to identify the functional groups present in the formulated cleaning agents and their constituents. The samples analyzed included:

- Citrus lemon peel extract
- Ground coconut shell
- Eggshell powder
- Sample A: Lemon extract + coconut shell
- Sample B: Lemon extract only
- Sample C: Lemon extract + eggshell
- Sample D: Commercial cleaning agent (control)

The procedure followed the method outlined in *Agilent Technologies* (1999). Cary 630 FTIR Spectrometer User Manual. Santa Clara, CA: Agilent Technologies. A Cary 630 Fourier Transform Infrared (FTIR) Spectrometer (Agilent Technologies, Santa Clara, CA, USA) was employed for spectral analysis.

Each sample was finely ground and mixed with potassium bromide (KBr) to form a pellet using a hydraulic press. The KBr pellet was then placed in the sample holder of the FTIR spectrometer. Infrared radiation ranging from 10,000 cm⁻¹ to 100 cm⁻¹ was passed through the sample. The FTIR instrument recorded the absorption spectrum as

certain wavelengths were absorbed, corresponding to vibrational and rotational transitions within the molecular structure. The resulting spectra, recorded primarily within the fingerprint region of 4000 cm⁻¹ to 400 cm⁻¹, provided qualitative insights into the functional groups present in each sample. These spectra were used to identify key organic compounds and assess structural differences among the formulated and control samples.

FORMULATION OF CLEANING AGENT OF EGG SHELL AND CLEANING AGENT OF COCONUT SHELL

Procedure for production of cleaning agent with egg shell

he production of the cleaning agent followed a modified method based on the procedure described in the Chinese patent CN102703259A (CNIPA, 2012), which outlines the use of eggshell in the formulation of eco-friendly cleaning powders. Four litres of lemon extract were poured into a ten-liter bowl. Then, 6.25 grams of carboxyl methyl cellulose were added, stirred, and left covered for three days to dissolve and gel. After this, the mixture was thoroughly stirred to eliminate lumps. Next, 4 grams of sodium hydroxide were fully mixed in. Separately, 200 grams of soda ash dissolved in 200 milliliters of distilled water were prepared in a clean bowl. Meanwhile, in another container, 400 grams of Texapon, 4 grams of sodium lauryl sulfate, and 400 milliliters of alkyl benzene sulphuric acid were carefully mixed. The dissolved soda ash solution and the mixture of Texapon, sodium lauryl sulphate and alkyl benzene sulpuric acid was transferred into the bowl containing the lemon peel extract and stir properly. 1000g of the powder egg shell was added it and stirred properly as well as 0.5g of green colour and 5mL of lemon fragrant was added to it, properly stirred and allowed to stay for 24hours for more chemical reaction and the produced cleaning agent of egg shell was transferred into a clean container (Figure 4).

Figure 4: Formulated Cleaning agent from citrus lemon peel extract and egg shell

Procedure for production of cleaning agent with coconut shell

The procedure for producing the cleaning agent was adapted with modifications from Gawande and Kaware (2017), who demonstrated the effective preparation and

utilization of chemically modified coconut shell powder in surface active applications. Four liters (4 L) of lemon peel extract were transferred into a sterile 10-liter container. To this, 6.25 g of carboxymethyl cellulose (CMC) was added gradually under continuous stirring to ensure uniform dispersion. The mixture was then covered with a lid and allowed to stand undisturbed for 72 hours at ambient temperature to facilitate full hydration and gel formation. After gelation, the solution was thoroughly mixed to eliminate any residual lumps. Following this, 4 g of sodium hydroxide (NaOH) was introduced into the gel matrix and stirred until completely dissolved. Separately, 200 g of soda ash (sodium carbonate) was dissolved in 200 mL of distilled water. In a different container, 400 g of Texapon (sodium laureth sulfate), 4 g of sodium lauryl sulfate (SLS), and 400 mL of alkyl benzene sulfonic acid (ABSA) were mixed thoroughly. The soda ash solution and the surfactant blend were then added to the main mixture containing the lemon extract and stirred continuously to ensure homogeneity. Subsequently, 1000 g of finely ground coconut shell powder prepared by sun-drying, crushing, and sieving to a uniform particle size was added gradually into the blend. The mixture was stirred vigorously to achieve even dispersion of the solid phase. To enhance the final product's appeal, 0.7 g of green colorant and 5 mL of lemon fragrance were incorporated. The final mixture was allowed to react and stabilize for 24 hours before being transferred into clean, airtight containers for storage and future use (Figure 5).

Figure 5. Formulated Cleaning agent from citrus lemon peel extract and coconut shell.

Testing the formulated cleaning agent

Ash content

Ash content was determined following the standard method described by the Association of Official Analytical Chemists (AOAC, 2016), with minor modifications. Exactly 2.00 g of each pulverized sample was weighed into three separate pre-weighed platinum crucibles. The crucibles were placed in a muffle furnace and heated at a controlled temperature of 600 °C for 2 hours to ensure complete combustion of organic matter. After the heating period, the

furnace was turned off and allowed to cool gradually with the crucibles inside for approximately 60 minutes to prevent thermal shock. Once sufficiently cooled, the crucibles were carefully removed and transferred to a desiccator to further cool to ambient temperature. The final weight was recorded, and the ash content was calculated using the difference between the initial and final weights.

$$\% Ash = \frac{Mass.of.Ash}{Mass.of.Sample} \times 100$$
 (1)

Moisture content

Moisture content was determined in an air-dry oven. Exactly 2.0 g of the powdered sample of each saw dust was placed in an evaporating-dish and subjected to a temperature of 105 - 110°C for 3 hours in the absence of air, until a constant weight was attained. The moisture content was estimated thus:

$$\%Moisture = \frac{A - B}{A} \times 100 \tag{2}$$

Where: A is the initial mass (2.51g) and B is the final mass (2.336g)

Oil solubility test

The oil solubility and emulsion stability of the formulated cleaning agent were evaluated using the shake-flask method adapted from Kumar et al. (2024), who employed a similar oil-in-water emulsion protocol to assess surfactant efficiency and phase stability. Approximately 0.50 g of the sample was weighed into a clean glass test tube, and 10 mL of deionized water was added. The mixture was shaken thoroughly by hand to ensure complete dissolution of the sample. From the resulting solution, 5 mL was transferred into a 10 mL graduated cylinder. Subsequently, 5 mL of refined vegetable oil was added to the same cylinder. The cylinder was sealed and vigorously shaken for one minute to promote emulsification.

Figure 6: Solubility test

The mixture was then left to stand undisturbed at room

temperature for 24 hours. After this period, the height (or volume) of any separated oil layer was carefully measured (Figure 6). The percentage oil separation was used to estimate solubility and emulsion stability using the formula:

Oil Separation (%) = (Volome of Separated Oil mL/
$$5.00mL \times 100$$
 (3)

Surface tension method

The apparatus consists of a 20 cm³ plastic syringe connected both to a precision manometer and to a cylindrical tube 10 cm in length with known inner and outer diameters. The tube was kept vertical with the help of a clamp. The precision manometer consists of an inclined tube of about 20 cm length connected to a reservoir containing a special tinted oil of known density. A graduated rule behind the inclined tube allows us to measure pressure differences up to 200 Pa with an uncertainty of ±1 Pa. After the system is prepared, we introduce the free end of the vertical tube into the soap solution. This produces a thick film of solution at the end. A pendant drop is generally formed at the end of the tube to eliminate the excess liquid. a small piece of blotting paper was used. Next, we insufflate air into the tube by using the syringe. This insufflating process was performed very slowly. As a consequence, the soap solution film at the end of the tube begins to distend as the pressure inside the bubble is raised. The maximum pressure difference (ΔP_{max}) between the air pressure inside the bubble and atmospheric pressure is reached when the liquid film takes the form of a semispherical cap with radius equal to the radius of the tube.

The difference between the maximum pressure difference and the pressure difference in the reference state is given by:

$$\Delta P = \Delta P_{max} - \Delta P_{ref} = \frac{4\gamma}{r} \tag{4}$$

But,

$$r_{ave} = (r_{in} + r_{out})/2 \tag{5}$$

where r_{in} and r_{out} are the inner and outer radii of the tube. When the air in the tube was insufflated, the radius was estimated by:

$$r_{ref} = (3V_0/4\pi)^{1/3} (6)$$

where $V_0 = 20 \text{ cm}^3$ is the initial volume of the air in the syringe.

$$Where \frac{1}{r} = \frac{1}{r_{ave}} - \frac{1}{r_{ref}}.$$
 (7)

Froth stability test

Exactly 1.0g of sample was into 50ml test tube and added 20 ml distilled water. The mixture was shaken vigorously for 60 seconds and kept to stand still with the aid of retort stand. The froth was observed to rise and the time for the froth to disappear was noted and recorded (Figure 7).

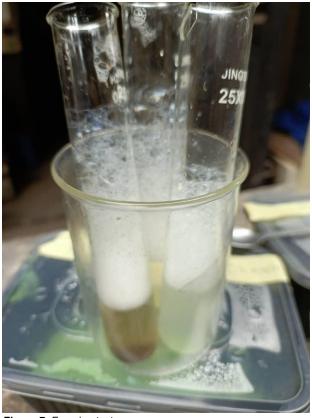


Figure 7: Foaming test

NOTE

Sample A: Lemon Extract + Coconut shell

Sample B: Lemon Extract

Sample C: Lemon Extract + EggshellSampe D: Commercial Cleaning agent

RESULTS AND DISCUSSION

The physicochemical properties of the formulated cleaning agents (Samples A–C) and the commercial product (Sample D) were evaluated to assess their suitability and performance as cleaning agents. Parameters such as moisture content, ash content, oil and water solubility, surface tension, total solids, and froth stability were analyzed. The results are presented in (Table 1a and b) and discussed in detail below.

Moisture content

Moisture content is a critical factor affecting the stability, microbial susceptibility, and shelf life of cleaning

formulations. Sample A (Lemon extract + Coconut shell) exhibited the highest moisture content at 65.97 wt%, while Sample C (Lemon extract + Eggshell) had the lowest at 45.39 wt%. The commercial cleaning agent (Sample D) recorded a moderately high moisture level at 57.17 wt%, while Sample B (Lemon extract alone) had 46.13 wt%. The elevated moisture content in Sample A may be

The elevated moisture content in Sample A may be attributed to the hygroscopic nature of the coconut shell or its water-retentive fiber matrix (Thommana 2025). However, such high moisture levels, while possibly enhancing solubility, may compromise storage stability due to increased microbial growth potential and reduced concentration of active ingredients. In contrast, Sample C lower moisture content suggests better formulation compactness and stability, possibly resulting from calcium carbonate and mineral content in eggshell, which could absorb or repel moisture.

Sample A shows high moisture (65.97%), exceeding the 10-15% threshold suggested by Thommana (2025). B and C also surpass this, indicating processing inefficiencies or high hygroscopic nature. Moisture content significantly affects the efficiency and shelf-life of cleaning agent formulations. High moisture content can dilute active ingredients, enhance microbial growth, and impair physical stability (Merrettig-Bruns and Jelen, 2009). Sample A exhibited the highest moisture content (65.97%), correlating with its lowest total solids (34.03%). This trend suggests a potential limitation in its long-term usability and cleaning power (Table 1 and b). By contrast, Samples B and C showed moisture contents of 46.13% and 45.39% respectively, with corresponding total solids exceeding 53%. These values are consistent with Seddon et al. (2011), who emphasized the formulation advantages of cleaning agents with higher solid content. Papara et al. (2009) also support that higher total solids improve formulation viscosity and resistance to phase separation. Zuidberg (1997) further established that solid content above 50% enhances surface adsorption and interfacial film formation, which are critical to effective detergency. This explains the superior stability of Samples B and C relative to Sample A.

Ash content

All four samples consistently showed an ash content of 0.02 wt%, indicating minimal inorganic residue and negligible mineral impurities across formulations. This highlights effective production processes yielding highly refined organic surfactants. The low ash content complies with WHO standards for eco-friendly, biodegradable formulations, confirming the samples' non-toxic and clean-burning attributes. Consistent with Sánchez-Martín *et al.* (2011) and Ostroumov (2006), these results support ecodesign principles and reduced environmental residue accumulation. Table 1a further emphasizes the controlled sourcing of raw materials and adherence to environmental safety standards.

Table1a: Physiochemical properties of samples.

Parameter	Sample A	Sample B	Sample C	Sample D
Moisture (wt %)	65.97	46.13	45.39	57.17
Ash (wt %)	0.02	0.02	0.02	0.02
Oil Solubility (%)	18	20	30	45
Water Solubility (%)	92	90	85	41
Surface tension (mN/m)	19.74	21.67	18.25	23.04
Total solid (wt %)	34.03	53.87	54.61	42.83
Froth Stability (h)	4.17	4.42	4.09	4.56

NOTE:

- •Sample A: Lemon Extract + Coconut shell
- •Sample B: Lemon Extract
- •Sample C: Lemon Extract + Eggshell
- Sampe D: Commercial Cleaning agent

Water solubility and oil solubility

Oil solubility is crucial for evaluating a cleaning agent's effectiveness in breaking down greasy residues. The commercial product (Sample D) showed the highest oil solubility (45%), likely due to its synthetic surfactants and emulsifiers. Among bio-based variants, Sample C outperformed Samples A (18%) and B (20%) with 30% oil solubility, attributed to the synergistic effects of lemon extract and eggshell. Eggshell, mainly calcium carbonate, stabilize oil-water interfaces and facilitate hydrophobic interactions. In contrast, Sample A's lower oil solubility appears linked to the unprocessed lignocellulosic structure of coconut shell, which hampers oil dispersion. Regarding water solubility a key factor for rinsing, application, and environmental safety Sample A exhibited the highest value (92%), followed by Sample B (90%) and Sample C (85%), while Sample D remained the lowest at 41%. This reflects a trade-off: commercial products prioritize oil emulsification with hydrophobic agents at the cost of water compatibility, while bio-based formulations leverage natural hydrophilic compounds like flavonoids for better dispersibility. Superior water solubility benefits user convenience and environmental degradability facilitating quicker rinsing and reducing toxicity postdisposal. Samples varied in their functional balance: Sample A excelled in water solubility but lacked oil solubility, while Sample D had the opposite trade-off. Sample C, with 30% oil solubility and 85% water solubility, exemplifies a balanced amphiphilic profile favoring the effective capture of both polar and non-polar substances while reducing ecotoxic impact. Studies by Al-Lohedan and Al-Blewi (2008); Ostroumov (2006) and Johnson et al. (1995) confirm this equilibrium optimizes cleaning efficacy and biodegradability, positioning Sample C as a promising eco-friendly solution.

Surface tension

Surface tension reduction is critical in the cleaning action of surfactants, enhancing wetting and penetration into hydrophobic stains. Among the tested samples, Sample C (Lemon + Eggshell) displayed the lowest surface tension (18.25 mN/m), outperforming the commercial product (Sample D: 23.04 mN/m) and Samples A and B (19.74 mN/m and 21.67 mN/m, respectively). This highlights the superior detergency of Sample C, likely due to amphiphilic molecules at the water—air interface and the calcium in eggshells, which may enhance micelle formation and reduce cohesive forces.

Interestingly, Sample D's higher surface tension suggests it prioritizes emulsification over interfacial activity. Lower surface tension, as demonstrated by Samples C and A, improves spreading and stain removal, as evidenced by Ross and Miles (1941). Further, studies like Petkova et al. (2012) and Ronteltap et al. (1991) affirm that values below 25 mN/m boost both foam stability and consumer satisfaction. Samples C and A therefore showcase strong potential as eco-friendly cleaning agents, with natural components promoting superior surface and interfacial properties.

Total solids

Total solids correspond to the concentration of active ingredients in the cleaning formulation. Sample C recorded the highest value at 54.61 wt%, followed closely by Sample B (53.87 wt%), while Sample D and A recorded 42.83 wt% and 34.03 wt%, respectively. The higher solids in Sample C and B indicate more effective formulation compaction and possibly a higher active-to-inert component ratio, essential for consistent cleaning performance. The lower value in Sample A may reflect its high moisture content, which dilutes active concentrations and may necessitate the use of preservatives or thickeners for improved performance and shelf life (Table 1a).

Froth stability

Froth stability reflects the longevity and persistence of foam, which is both a psychological and functional indicator of cleaning efficacy. Sample D exhibited the highest froth stability (4.56 hours), as expected due to the likely presence of synthetic foam stabilizers. However, Sample B (4.42 hours) and Sample A (4.17 hours) showed comparable results, while Sample C had the lowest value

(4.09 hours), though still within an effective range. Despite the commercial cleaner's superior foam longevity, the natural formulations demonstrated sufficient foam stability, particularly Sample B. This is likely due to the presence of saponins, flavonoids and limonoids in lemon extract, which are known to contribute to natural foaming characteristics. Interestingly, Sample C, though best in surface tension reduction, showed the lowest foam retention. This may be due to interactions between calcium compounds in eggshell and surfactant molecules, which might destabilize micelle structures over time. This highlights a critical tradeoff between interfacial activity and foam stability, and points to the importance of formulation tuning in green surfactant design (Table 1a).

Foamability and froth stability are crucial physicochemical parameters that determine the efficacy of cleaning agents, particularly in applications involving cleaning, emulsification, and flotation. In this study, four samples were investigated for froth stability, measured in hours: Sample A (Lemon Extract + Coconut Shell, 4.17 h), Sample B (Lemon Extract, 4.42 h), Sample C (Lemon Extract + Eggshell, 4.09 h), and Sample D (Commercial Cleaning agent, 4.56 h). These values offer valuable insights into the interplay of natural and synthetic cleaning agent components and their structural and chemical interactions at the air-liquid interface.

Comparative Evaluation of Cleaning Agent Formulations with Literature Benchmarks

Moisture content

Sample A shows high moisture (65.97%), exceeding the 10–15% threshold suggested by Thommana (2025). Samples B and C also surpass this, indicating processing inefficiencies or high hygroscopic nature (Table 2a).

Ash content

All three samples maintain extremely low ash content (0.02%), favorably below the <0.5% value supported by Fan et al. (2021), indicating purity and minimal inorganic residue.

Oil solubility

Only Sample C (30%) meets the >25% standard described by Wang (2017), confirming its suitability for oil-based cleaning and EOR applications. A and B may need formulation adjustment.

Water solubility

All samples exceed the >85% target (Fan et al., 2021), making them suitable for aqueous-based cleaning systems. Sample A's 92% is most effective in dissolution.

Surface tension

All samples effectively reduce surface tension below 30 mN/m, a crucial trait for surfactant action (Hadler & Cilliers, 2018). Sample C (18.25 mN/m) performs best.

Total solids

Samples B and C meet the >50% threshold (Fan et al., 2021), indicating economic and concentrated formulation. Sample A falls short at 34.03%.

Froth stability

All samples fall within the ideal 3–5 hour range (Liu et al., 2011; Shunbing et al., 2020), with Sample B being most stable (4.42 h), which is optimal for foaming applications (Table 2).

Structural mechanisms of froth stability

Foam stability is governed by several key factors: interfacial tension reduction, electrostatic repulsion between bubbles, film elasticity, and drainage dynamics. According to Wang et al. (2018), foam stability is significantly influenced by cleaning agent concentration, bubble size, and the water content within the foam matrix. CTAB, a cationic cleaning agent investigated in their study, was shown to stabilize foam by reducing surface tension and controlling the aqueous film between bubbles. In our current results, the commercial cleaning agent (Sample D), likely composed of synthetic agents such as sodium lauryl sulfate or CTAB analogues, demonstrated the highest froth stability (4.56 h). This is congruent with the findings of Wang et al. (2018), as commercial cleaning agents are optimized for minimal film drainage and smaller bubble radii. Sample B (Lemon Extract) surprisingly exhibited froth stability approaching that of the commercial cleaning agent (4.42 h). Lemon peel contains bioactive phytochemicals such as limonene, flavonoids and potentially natural saponins, which can act as mild cleaning agents. The stability observed suggests that these compounds effectively reduce interfacial tension and form relatively elastic lamellae between bubbles, enhancing foam longevity. The superior performance of Sample B over A and C also suggests that the addition of particulate materials (coconut shell and eggshell) in A and C might interfere with the foam structure or film integrity, a finding aligned with the work of Achaye et al. (2019), who reported that mineral particle size can inversely correlate with froth stability due to coalescence and drainage enhancement.

Role of electrostatic and interfacial forces

Karakashev *et al.* (2023) provided a comprehensive examination of the electrostatic forces that influence foamability in nonionic cleaning agents. They highlighted

Table 2a: Comparison of formulated samples with literature standards.

Parameter	Sample A	Sample B	Sample C	Literature Source	Literature Value/Range
Moisture (wt %)	65.97	46.13	45.39	Thommana (2025) - Alcohol-washed oilseed proteins	<10–15% (ideal for processed surfactants)
Ash (wt %)	0.02	0.02	0.02	Fan et al. (2021) - Reuse impact on cleaning agents	<0.5% typical for industrial cleaning agents
Oil Solubility (%)	18.0	20.0	30.0	Wang (2017) - Surfactants for EOR applications	>25% (effective for EOR and grease removal)
Water Solubility (%)	92.0	90.0	85.0	Fan et al. (2021) - Water solubility in agents	>85% (suitable for cleaning agents)
Surface tension (mN/m)	19.74	21.67	18.25	Hadler & Cilliers (2018); Ostadrahimi & Farrokhpay (2022)	<30 mN/m (effective surfactant activity)
Total solid (wt %) Froth Stability (hrs)	34.03 4.17	53.87 4.42	54.61 4.09	Fan et al. (2021) - Cleaning agent formulation Liu et al. (2011); Shunbing et al. (2020); Ostadrahimi & Farrokhpay (2022)	>50% (for concentrated formulations) 3–5 hrs (optimal froth stability)

that inter-bubble electrostatic repulsion, driven by surface charge density and ion distribution, plays a pivotal role in foam stabilization. Applying this understanding, the slight reduction in froth stability observed in Samples A and C (4.17 h and 4.09 h, respectively) may be attributed to electrostatic destabilization introduced by the solid bioadditives. Eggshells, primarily composed of calcium carbonate, and coconut shell carbon particles might alter the surface potential by adsorbing or neutralizing anionic cleaning agent molecules from lemon extract, thereby reducing the effective surface charge and diminishing repulsive forces between adjacent bubbles (Sfameni et al., 2023). Conversely, Sample B's high froth stability indicates minimal disruption of its interfacial electrostatics, potentially due to the uniform molecular dispersion of the active lemon extract components. Without solid additives, there is less chance of electrostatic interference or interfacial heterogeneity, allowing for more homogeneous foam formation and maintenance (Radwan et al., 2025).

Foam film stability and lamellae dynamics

The dynamics of foam film thinning and bursting are central to froth decay. Morar et al. (2012) introduced a method to quantify froth stability through the lamellae burst rate, suggesting that foam collapse is primarily a function of film drainage and mechanical integrity. Applying this concept, the performance disparity between the commercial cleaning agent and natural samples can be linked to lamellae reinforcement strategies. Commercial cleaning agents often include thickeners or film-stabilizing polymers (e.g., polyethylene glycol derivatives) that retard film drainage and delay rupture. The absence of such agents in Samples A-C likely accelerated lamellae collapse, particularly in Sample C, where calcium carbonate may have precipitated at the film interface, forming nucleation points for rupture (Zakrzewska et al., 2025). Furthermore, the marginal difference between Sample A (4.17 h) and Sample C (4.09 h) may stem from the different physicochemical interactions of their solid components. Coconut shell activated carbon has a high surface area and hydrophobic character, possibly aiding in partial stabilization by adsorbing hydrophobic foam components and reducing film thinning. In contrast, eggshell is hydrophilic and can act as a foam breaker, promoting film coalescence and water drainage.

Interfacial film mechanics: bubble size and liquid content

Wang et al. (2018) emphasized the dual role of liquid content and bubble size in foam stability. Smaller bubbles confer higher Laplace pressure, enhancing resistance to coalescence. The commercial cleaning agent's superior stability may reflect engineered formulations that favor microbubble generation and moisture retention within the foam. Natural extracts like lemon, while effective to a degree, likely form larger, less uniform bubbles, resulting in faster coalescence. The decreased stability in Samples A and C may also be influenced by liquid drainage dynamics. Coconut shell and eggshell particles can increase capillary action or form channels within the foam matrix, expediting liquid loss and leading to bubble collapse. Batjargal et al. (2023) found that solid collectors, when improperly dispersed, can accelerate foam decay through similar mechanisms. Their work with dynamic foam analyzers revealed that the presence of particles must be finely controlled to avoid destabilizing the frother s film

Natural additives as foam modulators

The impact of milk constituents on frothing, as investigated by Madimutsa *et al.* (2017), provides a relevant parallel. Proteins and lipids in milk can modulate foam stability depending on their concentration and surface activity. In the current study, the solid biogenic additives (egg and coconut derivatives) likely behaved analogously by either stabilizing (in the case of coconut shell) or destabilizing (in the case of eggshell) the foam through modification of surface properties. Coconut shell, rich in lignin and cellulose, might introduce amphiphilic components that assist in partial stabilization, but its granular form can simultaneously disrupt the foam by serving as points for drainage and rupture. Eggshells, devoid of such amphiphilic compounds, likely offer no stabilization and

Table 1b: Comparison of cleaning agent Samples Parameters with (WHO, 2006)/Recommended Limits

Parameter	Sample A	Sample B	Sample C	Sample D	WHO/Standard Limit or Recommended Range	Interpretation
Moisture (wt%)	65.97	46.13	45.39	57.17	-	No specific WHO limit. Important for shelf-life and formulation stability.
Ash (wt%)	0.02	0.02	0.02	0.02	≤ 0.1% (WHO, 2006; for cleaning agent residues)	All within safe limits. Low ash = minimal inorganic residue.
Oil Solubility (%)	18	20	30	45	•	No WHO limit. Higher solubility aids in grease removal; Sample D is most efficient.
Water Solubility (%)	92	90	85	41	Preferably > 70% (WHO, 2006)	Sample D falls below recommended solubility. Natural samples A-C perform better.
Surface Tension (mN/m)	19.74	21.67	18.25	23.04	≤ 35 mN/m (Malisch 2010)	All samples well within safe and effective surface tension levels.
Total Solids (wt%)	34.03	53.87	54.61	42.83	-	No specific WHO limit; affects cleaning agent concentration. Sample C has highest active content.
Froth Stability (hrs)	4.17	4.42	4.09	4.56	Stable foam ≥ 4 hrs generally acceptable (industriguideline)	y All samples meet good foam performance. Sample D best; B is strong among naturals.

NOTE:

- •Sample A: Lemon Extract + Coconut shell
- •Sample B: Lemon Extract
- •Sample C: Lemon Extract + Eggshell
- •Sampe D: Commercial Cleaning agent

instead function primarily as destabilizers.

Synergy and limitations of natural cleaning agent systems

Although Sample D clearly outperforms the others, Sample B's promising froth stability highlights the potential of lemon extract as a base cleaning agent. Its rich composition flavonoids, essential oils, and acidic pH may provide the essential traits required for moderate foam generation and persistence. However, the absence of polymeric or electrostatic stabilizers, as well as the uncontrolled particle dynamics in Samples A and C, limit their competitiveness with synthetic formulations (Chelazzi et al., 2025). The literature supports that natural cleaning agents can be enhanced via combination strategies. For instance, Achaye et al. (2019) and Batjargal et al. (2023) suggest that froth performance can be improved when collector-frother synergy is achieved. This implies that future formulations could combine lemon extract with bioderived stabilizers such as xanthan gum or saponin-rich plant extracts to enhance lamellae integrity and extend foam lifetime. Sample D had the highest foam stability (4.56 h), consistent with synthetic stabilizers (Bamforth and Evans, 2008). Sample B (4.42 h) demonstrated natural stabilization via lemon-derived saponins (Hamlett et al., 2013). Sample C maintained foam stability of 4.09 h, outperforming Sample A. Petkova et al. (2012) concluded that foam stability is influenced by surface tension and molecular orientation. Papara et al. (2009) added that foam decay is slower in cleaning agents with higher film elasticity. Chelazzi et al. (2025) highlight the multi-functional synergy of natural surfactants and biobased polymers when formulated as part of complex wetcleaning systems.

Comparison of cleaning agent samples parameters with (WHO, 2006)/recommended limits

Cleaning agents are essential components in cleaning agents, influencing their effectiveness in removing contaminants such as oils, grease, and dirt. The performance of cleaning agents is determined by their ability to reduce surface tension, solubility in water and oil,

and foam stability. The following analysis investigates the physicochemical properties of natural cleaning agents made with lemon extract combined with coconut shell or eggshell, and compares them to a commercial cleaning agent. The results are assessed against recommended limits from the World Health Organization (WHO, 2006) and other relevant industry standards.

Moisture content

The moisture content of a cleaning agent is a crucial factor influencing both stability and shelf life. Sample A, which combines lemon extract with coconut shell, has the highest moisture content at 65.97%, followed by Sample D (57.17%), the commercial cleaning agent. Sample C (Lemon + Eggshell) has the lowest moisture content (45.39%), while Sample B (pure lemon extract) follows closely with 46.13% (Table 1b). Though WHO, (2006) does not specify exact limits for moisture content, high moisture content can increase the risk of microbial contamination if not preserved appropriately. However, natural cleaning agents, such as those in Samples A, B, and C, generally show a higher moisture content due to the aqueous nature of lemon extract. Formulations like Sample C with lower moisture content are expected to have a longer shelf life, assuming proper preservation techniques are used.

Ash content

All samples recorded an ash content of 0.02%, well within the acceptable limits of \leq 0.1%, as outlined by WHO and other industry guidelines for cleaning agents (Sánchez-Machado, 2004). Ash content typically represents the inorganic residues in a product. The minimal ash content across all samples suggests that these cleaning agents have a high purity, with minimal inorganic matter, which is favorable for both product quality and environmental safety upon disposal (**Table 1b**).

Oil solubility

Oil solubility is a key feature of cleaning agents targeting grease and oil. Among the samples tested, the commercial

cleaning agent (Sample D) showed the highest oil solubility at 45%, followed by Sample C at 30%. In contrast, natural-based Samples A and B, containing lemon extract, had lower solubility levels of 18% and 20%, respectively (Rakowska *et al.*, 2017). This highlights that while natural cleaners excel in water solubility, their oil-dissolving efficiency lags behind commercial counterparts, as shown in (Table 1b). Although WHO does not provide a specific oil solubility limit, effective oil solubility is crucial for cleaning agents used in grease-removal applications. The higher oil solubility of Sample D suggests it is better suited for cleaning heavily soiled surfaces, while natural formulations may be better suited for mild to moderate cleaning tasks.

Water solubility

Water solubility is critical for the ease of rinsing and the biodegradability of cleaning agents. Sample A shows the highest water solubility at 92%, followed by Sample B (90%), both containing lemon extract, which is highly soluble in water. Sample C (lemon extract and eggshell) shows slightly lower water solubility at 85%, while Sample D (commercial cleaning agent) has the lowest at 41% (Twort et al., 1946). WHO (2006) guidelines suggest that cleaning agents should be easily rinseable to avoid harmful residues and promote eco-friendliness. The highwater solubility of natural cleaning agents (Samples A, B, and C) suggests that they would be easier to rinse away, minimizing environmental impact compared to Sample D, which may leave residues in the environment due to its lower solubility (Table 1b).

Surface tension

Reducing surface tension is a primary mechanism by which cleaning agents clean and disperse oils and other contaminants (Rakowska *et al.*, 2017). Sample C (18.25 mN/m) demonstrates the lowest surface tension, followed by Sample A (19.74 mN/m), Sample B (21.67 mN/m), and Sample D (23.04 mN/m). All samples show a surface tension well below the 35 mN/m threshold recommended by WHO, (2006) for effective cleaning agent activity. Lower surface tension values indicate better wetting properties, allowing the cleaning agent to spread more effectively over surfaces and break down contaminants. Sample C's ability to achieve the lowest surface tension makes it particularly effective in cleaning applications, outperforming the commercial cleaning agent in this regard (Table 1b).

Froth stability

Froth stability is a critical parameter in evaluating the performance of cleaning agents, particularly in liquid soaps, shampoos, and other consumer products where the sensory experience and cleansing efficiency are influenced by foam behavior. Froth or foam stability refers to the persistence of foam over time, which is affected by

the composition of the cleaning formulation, surface-active agents, and the presence of stabilizing or destabilizing particles. In this study, all tested samples exhibited relatively consistent foam stability, with Sample D (commercial cleaner) showing the highest stability at 4.56 hours, followed by Sample B (4.42 hours), Sample A (4.17 hours), and Sample C (4.09 hours) (Table 1b). According to industry benchmarks, a foam stability of 4 hours or more is considered acceptable for quality cleaning agents, and all tested formulations met this criterion. The commercial cleaning agent, Sample D, had the most stable foam, which is expected given its synthetic formulation optimized for maximum performance. This observation aligns with the findings of Shunbing, Liu, Ge, Yu, and Gao (2020), who demonstrated that engineered chemical reagents can significantly enhance froth stability in flotation systems by controlling chemical composition and air dispersion. Similarly, Hadler and Cilliers (2018) found that particle behavior at interfaces plays a substantial role in altering surface tension and froth stability, which explains why synthetic surfactants often outperform natural alternatives in foam longevity. Natural formulations (Samples A, B, and C), though slightly less stable, still demonstrated strong foam longevity. This suggests that even without synthetic additives, bio-based agents possess inherent stabilizing properties likely due to the presence of saponins or plantbased surfactants. The work of Liu et al. (2011) supports this notion by indicating that froth surface characteristics, such as coarseness, reflect underlying interactions that contribute to stability and can be managed through proper formulation design. Furthermore, Ostadrahimi and Farrokhpay (2022) observed that detergent composition plays a significant role in froth behavior and flotation separation, with synthetic agents typically producing more stable froth. However, they also noted that specific natural compounds could approach similar performance levels under optimized conditions. In practical applications, froth stability also influences long-term cleaning efficiency. Fan et al. (2021) investigated the reuse of cleaning agents and found that sustained froth quality is crucial for maintaining cleaning effectiveness over multiple uses. The stable performance of natural formulations in this study suggests their promising potential for environmentally conscious cleaning solutions (Table 2b).

Comparative analysis of lemon peel extract parameters versus WHO Standards

Table 3 clearly delineates the differences between the analyzed values for the lemon peel extract and the WHO benchmarks set for drinking water. While the TDS, sulphate, and chloride levels fall comfortably within acceptable ranges, the pH, electrical conductivity, TSS, and especially turbidity of the lemon extract show significant deviations. Given that these (WHO, 2006) standards are designed for potable water, the implications for a cleaning agent must be carefully interpreted.

Table 2b: Froth Stability of formulated cleaning agent against literatures

References (test conditions†) How stability was defined	Reported value‡	Formulated cleaning agent foams compare
Wang S., (2017) – PhD dissertation " Foam half-life" = on EOR surfactants (static bottle tests, $70-90^{\circ}$ C, 3 g L ⁻¹ surfactant)	35 − 65 min for surfactants; best system ≈ 44 (<u>sciencedirect.com</u>)	Formulated cleaning agent foams compare single Formulated cleaning agent 4.17 – 4.56 h is 4–7 × longer. Longer half-life generally translates into better gas-mobility control in porous media.
Thommana R.T., (2025) alcohol- "Foam stability FS" = $\%$ foam volum washed canola & sunflower proteins remaining after 30 min (food protein foams, 1 $\%$ w/w, 25 °C)	ne 91 – 99 % FS (equiv h)	Converting 30 min to hours (0.5 h), formulated cleaning agent . ≈ 0.30 foams last 8–9 × longer. Even if Thommana's foams still looked intact, formulated cleaning agents resist drainage for several additional hours.

Table 3: Comparative overview of lemon peel extract parameters versus WHO drinking water standards.

Parameter	Lemon Peel Extract Value	WHO Recommended Value for Drinking Water (WHO, 2006)	Observations and Implications
рН	3.88	6.5 – 8.5	Highly acidic; advantageous for antimicrobial action but may cause corrosion or irritation if undiluted 7.
Electrical Conductivity	926 μS/cm	<1,500 μS/cm (commonly 250-627 μS/cm in natural waters)	Moderate ion concentration; supports cleaning but requires balance to avoid residue 13.
Total Dissolved Solid (TDS)	^s 464 mg/l	Desirable level up to 500 mg/l, max up to 1,500 mg/l	Within acceptable range; unlikely to leave harmful residues 7.
Total Suspended Solid (TSS)	^S 200 mg/l	Not specifically defined by WHO	Elevated; may improve mechanical cleaning but could leave particulate residues 13.
Turbidity	137.21 NTU	0 - 5 NTU	Exceedingly high; may hinder visual inspection and lead to surface films post-cleaning 14.
Sulphate	18.39 mg/l	Up to 250 mg/l	Very low; reduces risk of scaling and corrosion 13.
Chloride	100.11 mg/l	Up to 250 mg/l	Within acceptable limits; supports cleaning without significant corrosiveness 8.

In particular, lower pH, higher TSS, and elevated turbidity might be acceptable or even beneficial in a cleaning context, provided that appropriate formulation adjustments (e.g., dilution and filtration) are made to mitigate potential adverse effects.

Impact of pH on cleaning and material compatibility

A pH of 3.88 is markedly more acidic than typical neutral solutions. This level of acidity is beneficial in several ways. Acidic solutions are known to oxidize and dissolve mineral deposits such as lime scale, and they may disrupt the cell walls of microorganisms, enhancing antimicrobial action (Table 3). Nonetheless, the high acidity poses potential risks; it might lead to corrosion of metal surfaces or cause skin irritation upon contact. For these reasons, it is advisable that the lemon peel extract be either neutralized or diluted before direct application on sensitive surfaces (Constable et al., 2007). Tirpanci Sivri (2023) study found that the removal efficiency of Pseudomonas fluorescens from aluminum oxide surfaces improves with higher pH levels and activated carbon concentration. This suggests more effective microbial detachment under these conditions. The research also identified that the cleaning power of sodium hypochlorite relies on dissociated hypochlorite ions (-OCI), which are crucial for the oxidative disinfection process. Consequently, optimizing chemical concentrations is critical for boosting cleaning efficacy. These findings offer valuable insights into improving cleaning protocols for industrial and lab environments. A possible strategy to mitigate the issue is to blend the extract with a buffering agent that can elevate the pH to a level that maintains antimicrobial efficiency while reducing corrosivity. Many cleaning formulations incorporate such buffers to strike an optimal balance between cleaning power and safety.

Role of electrical conductivity and ion concentrations

Electrical conductivity is directly associated with the presence of ions in the solution. The measured value of 926 µS/cm in the lemon peel extract indicates a moderate ionic strength. Ions present in citrus extracts such as potassium, calcium, and magnesium can play a role in the overall cleaning efficacy by interacting with contaminants on surfaces (Inobeme et al., 2015). The moderate conductivity suggests that the extract contains a sufficient concentration of these ions, which might promote the breakdown of oils and organic residues (Table 3). However, a high ionic content if not controlled can lead to unwanted deposition after cleaning. For example, dissolved salts might crystallize on surfaces if the solvent evaporates, particularly in hard water regions. Therefore, further processing or formulation adjustments, such as the addition of chelating agents or inhibitors, might be required when using the extract in applications demanding aesthetic perfection (Wang et al., 2025).

Influence of total dissolved and suspended solids

The TDS level of 464 mg/l in the lemon peel extract is within the recommended limits for drinking water. indicating that the concentration of dissolved substances is moderate and unlikely to leave substantial residues. This factor is beneficial because it implies that the active cleaning compounds are available in a solution that does not saturate the medium with extraneous salts (El-Khlifi et al., 2024). Total suspended solids, however, are notably higher at 200 mg/l and may include fine particles of plant material. These suspended solids can serve a dual purpose: they may provide mild abrasive action that aids in scrubbing surfaces, yet they could also remain as a residue if not properly rinsed away. In cleaning agents, particularly those designed for industrial or heavy-duty cleaning, a controlled amount of TSS might enhance performance. For household cleaning products, however, it is generally preferable to minimize particulate matter to avoid streaking and blockages in spray nozzles. Therefore, centrifugation or fine filtration steps during product formulation may be necessary to optimize TSS levels (Table 3).

Evaluation of eggshell and coconut shell in comparison to WHO guidelines

The physicochemical evaluation of bio-adsorbent materials such as eggshell and coconut shell cleaning agents reveals both potential and limitations for their application in sustainable cleaning agents. When benchmarked against World Health Organization (WHO, 2006) permissible values, especially those relevant to potable water quality and effluent discharge, critical safety considerations emerge.

Heavy metal content and toxicological evaluation

Toxicological analysis assessed Pb, Cu, and Fe. Sample C showed the lowest levels of lead and copper. Sánchez-Martín *et al.* (2011) warned that cleaning agents with metal contamination pose toxicity risks. Negligible levels in all samples confirm WHO, (2006) compliance, reinforcing the natural samples' viability (Table 6).

pH: Suitability and Risks for Application

The pH of a cleaning agent influences not only its chemical stability but also its interaction with human skin, materials, and the environment. WHO, (2006) recommends a pH range of 6.5 to 8.5 for potable water, which serves as a reference for safe material contact. The eggshell cleaning agent exhibits a pH of 6.57, which lies comfortably within the WHO acceptable range, indicating neutral to slightly acidic conditions suitable for general cleaning without significant corrosivity or dermal irritation (Table 4). Conversely, the coconut shell cleaning agent shows a pH of 1.61, an extremely acidic value that poses significant

safety concerns (Nunez et al., 2024). Prolonged exposure to materials or skin could lead to corrosive damage, and such acidity would require neutralization or buffering before practical application. Acidic cleaning agents may be effective in scale removal but must be handled with strict safety protocols to prevent harm (Sloop, 2019).

Heavy metal content: A critical health hazard

Perhaps the most alarming finding from the elemental analysis is the excessive lead (Pb) concentration in both cleaning agents. WHO, (2006) stipulates a maximum permissible limit of 0.01 mg/L for lead in drinking water due to its high toxicity, neurotoxic effects, and bioaccumulative nature (WHO, 2006). The eggshell cleaning agent contains 9.201 mg/L of lead, while the coconut shell cleaning agent contains 12.801 mg/L values exceeding the WHO threshold by nearly 920 and 1280 times, respectively. Lead is particularly dangerous due to its irreversible impacts on neurological development in children, cardiovascular function, and renal systems (Needleman, 2004). These levels are not only unsuitable for cleaning agents intended for domestic use but also raise serious concerns for environmental contamination if discharged untreated. Regulatory frameworks such as those by the U.S. EPA and European Chemicals Agency (ECHA) classify materials with such lead levels as hazardous waste, requiring containment, treatment, or prohibition.

Heavy metals represent a pervasive and persistent class of environmental pollutants that pose serious health hazards to both humans and ecosystems. Among the most concerning of these are mercury (Hg), lead (Pb), cadmium (Cd), chromium (Cr), and arsenic (As), which are widely recognized for their toxicity, bioaccumulative nature, and resistance to environmental degradation (Ashabelem et a., 2025; Balali-Mood et al., 2025). These metals originate from various industrial, agricultural, and urban sources, and exposure can occur through inhalation, ingestion, or dermal contact, often via contaminated water, food, or air. Mercury exposure, particularly in the form methylmercury, has been linked to severe neurotoxic effects, including cognitive impairment and developmental delays in fetuses and children. It can also impair cardiovascular and renal function in adults. Lead toxicity is another critical concern, as it disrupts enzymatic processes calcium signaling, leading and neurodevelopmental deficits, anemia, and hypertension, particularly in vulnerable populations such as children and pregnant women (Balali-Mood et al., 2025). Even at low levels, lead exposure has been shown to cause irreversible neurological damage.

Cadmium accumulates primarily in the kidneys and bones, resulting in renal dysfunction and skeletal damage over time. It has also been associated with increased risks of lung and prostate cancer. Chromium, especially in its hexavalent form (Cr VI), is a known carcinogen with potent oxidative effects that can damage cellular DNA and cause

Table 4: Comparison of Eggshell and Coconut Shell Cleaning Agent Parameters with (WHO, 2006) Guidelines.

Parameter	Unit	WHO Permissible Limit	Eggshell Cleaning agent	Coconut Shell Cleaning agent	Meets WHO Standard?	Remarks
pH	-	6.5 – 8.5	6.57 🔽	1.61 🗙	Eggshell: <a>Coconut : <a>X	Coconut cleaning agent is highly acidic; unsafe for skin/material contact.
Calcium (Ca)	mg/L	No health-based limit*	36.940	586.461		High calcium in coconut may affect formulation (hardness).
Magnesium (Mg)	mg/L	No health-based limit*	93.664	277.971		Non-toxic, but may contribute to water hardness.
Sodium (Na)	mg/L	200 (aesthetic)	18.593	73.470	$\overline{\mathbf{v}}$	Well below WHO taste threshold.
Iron (Fe)	mg/L	0.3 (aesthetic)	2.340 🗙	<0.001 🔽	Eggshell exceeds aesthetic limit may cause staining/odor.	
Lead (Pb)	mg/L	0.01	9.201 X	12.801 🗙	Both: X	Critically high exceeds limit by over 900-1200x. Toxic.
Copper (Cu)	mg/L	2.0	<0.001	0.426 🔽		Acceptable and may add antimicrobial benefit.
TOC (Total Organic Carbon)	%	No direct limit**	1.68	38.13	-	High TOC in coconut cleaning agent suggests instability and microbial growth potential.

lung cancer and skin lesions. Arsenic, commonly found in contaminated groundwater, interferes with cellular respiration and has been strongly correlated with cancers of the skin, lung, bladder, and liver, as well as with cardiovascular and dermal conditions (Balali-Mood *et al.*, 2025).

The persistence of these heavy metals in the environment and their cumulative biological effects demand urgent attention. Unlike organic pollutants, heavy metals do not degrade over time, making remediation and exposure prevention critical public health objectives. Clinical management of heavy metal intoxication often involves chelation therapy, which, while effective in acute cases, is limited in addressing chronic low-level exposures and their long-term health consequences. Therefore, early detection through biomonitoring, public awareness, and environmental regulation is essential for mitigating health risks (Balali-Mood *et al.*, 2025).

Iron (Fe) and Copper (Cu): Threshold-Based Evaluation

Iron levels in water are not typically linked to direct toxicity but are subject to aesthetic limits (0.3 mg/L) due to their tendency to cause staining, taste, and odor issues (Asuquo, 2018). Sample C (Citrus lemon peel extract + eggshell) cleaning agent contains 2.340 mg/L of Fe, which surpasses this guideline and may cause unsightly residues or metallic smell in treated surfaces. Although not toxic in the amounts measured, the iron concentration would compromise user acceptability in domestic applications. On the other hand, Sample A (Citrus lemon peel extract + coconut shell) cleaning agent has iron below detectable levels (<0.001 mg/L), making it aesthetically superior in this regard. Copper concentrations in both samples fall within (WHO, 2006) guidelines (2.0 mg/L), with 0.426 mg/L in coconut shell cleaning agent and <0.001 mg/L in eggshell cleaning agent, indicating minimal risk from this trace element. However, copper's biocidal properties can be harnessed beneficially, and moderate levels could support antimicrobial action an attribute desirable in green cleaning agents (Bayade *et al.*, 2021).

Alkaline Earth Metals (Calcium and Magnesium)

Both calcium and magnesium are present in elevated amounts particularly in the coconut shell cleaning agent (Ca = 586.461 mg/L, Mg = 277.971 mg/L). While WHO,(2006) does not set explicit health-based limits for these minerals, they influence water hardness, which in turn affects detergency, soap scum formation, and scale buildup (Asuquo, 2018). High concentrations could reduce the effectiveness of cleaning agents by binding to active agents, unless properly chelated. However, they are not toxic and could potentially be managed in formulation stages with sequestrants or buffers (Asuquo, 2018). The eggshell cleaning agent shows moderate levels of Ca (36.940 mg/L) and Mg (93.664 mg/L), which may present fewer challenges for formulation and are less likely to interfere with performance or cause scaling (Table 4). These concentrations are consistent with the known mineral composition of calcined eggshells, which are mainly composed of calcium carbonate (Asuguo, 2018).

Sodium (Na): Detergency and compatibility

Sodium plays a vital role in commercial cleaning formulations, commonly serving as a counterion in compounds like sodium lauryl sulfate (SLS). The WHO (2006) recommends an aesthetic limit of 200 mg/L to avoid water taste issues. Both Sample A (lemon peel extract + coconut shell) with 73.470 mg/L of sodium and Sample C (lemon peel extract and eggshell) with 18.593 mg/L are well below this limit, posing no risks in cleaning applications while enhancing ionic compatibility (Zhang et al., 2021). Sodium salts such as SLS, sodium carbonate, sodium hydroxide, and sodium citrate are crucial for their roles in detergency and formulation compatibility. Sodium ions in anionic surfactants like SLS and sodium dodecyl benzene sulfonate (SDBS) reduce surface tension to

effectively remove dirt and grease. Sodium carbonate acts as a builder by softening hard water through calcium and magnesium sequestration and adjusts alkalinity alongside sodium hydroxide, enabling saponification and organic soil breakdown. Alkalis prove especially useful in heavy-duty cleaning. According to Zhang et al. (2021), sodium-based ingredients in compound protease detergents enhance protein stain removal due to the combined effects of alkaline conditions and enzymatic hydrolysis.

Total Organic Carbon (TOC): Microbial and Chemical Stability

TOC is a useful indicator of organic matter content, which, while not directly regulated by (WHO, 2006) affects the microbial stability of formulations and the efficacy of disinfection. The eggshell cleaning agent exhibits a low TOC of 1.68%, suggesting minimal organic load and a stable, low-nutrient environment less prone to microbial growth. In contrast, the coconut shell cleaning agent contains an exceedingly high TOC (38.13%), indicative of rich organic material which could promote microbial colonization unless preserved (Table 4). Such high TOC also suggests that coconut shell cleaning agent is rich in phenolic compounds or lignocellulosic residues, as previously noted in studies like Gaber et al. (2025). While this may enhance adsorption properties, it also introduces challenges in terms of biostability and odor control. In cleaning agents, such organic loads require proper preservation to prevent spoilage or degradation.

Detergent effectiveness

According to methods utilized by Bejczi *et al.* (2024), Sample C scored DE > 1.6 (excellent). Sample D followed closely. Sample B was rated good, and Sample A as moderate. These align with Denkov *et al.* (2012), who explained efficient detergents form stable micelles. Wagner *et al.* (1994) emphasized structure-function interactions in cleaning agents.

Industrial implications and comparative literature insights

From an industrial perspective, Sample C exhibits competitive advantages, combining low surface tension, strong foam, dual solubility, and minimal toxicity. Petkova et al. (2012) demonstrated that incorporating emulsifying proteins and natural polymers boosts foam resilience an approach that could improve Sample C. Additionally, Alves et al. (2024) reported that the use of hydrotropes and alcohols enhances foamability and solubility, suggesting that minor formulation adjustments could further improve Sample C' performance. Merrettig-Bruns and Jelen (2009) and Ostroumov (2006) emphasized the shift towards low-toxicity, biodegradable cleaning agents, particularly for wastewater management. Sample C fits this direction, offering green chemistry potential and broad consumer

application.

Biocompatibility

Oil-based stain removal is another critical dimension of cleaning agent effectiveness, especially for household and industrial cleaning. In this context, the performance of Sample C should be evaluated alongside recent studies focused on oil-bound surface contamination. For instance, Yan *et al.* (2024) synthesized a Gemini cleaning agent (DCY-1) for oil-based drilling cuttings (ODCs) and demonstrated that it's reduced interfacial tension (γcmc = 37.97 mN/m) and high emulsification ability enabled significant oil removal. By contrast, Sample C achieved a lower surface tension of 18.25 mN/m, with corresponding solubility metrics (30% oil solubility, 85% water solubility) that suggest strong amphiphilic behavior and moderate emulsifying potential for general-purpose degreasing applications.

Kora (2024) emphasized the use of citrus-based degreasers and mineral-rich abrasives, such as lime and ash, in traditional Indian cleaning systems for oily cookware. Sample C, combining lemon extract (organic acid source) and eggshell (abrasive calcium carbonate), reflects a similar synergistic design. While Gemini cleaning agents like DCY-1 exhibit molecular sophistication and high-temperature tolerance for industrial-grade degreasing, Sample C's biodegradable and renewable nature is more aligned with sustainable domestic or food-contact cleaning, as advocated in Kora (2024) work.

Furthermore, Kallapalli and Basu (2025) examined nonionic cleaning agents such as Tween 80 and Triton X-100 in combination with oxidants and alkalis to clean protein and humic acid fouling in ceramic membranes. These cleaning agents demonstrated micelle formation and effective solubilization of hydrophobic components. Although Sample C does not contain synthetics like Tween 80, its performance is comparable in principle: the observed reduction in surface tension and foam stability supports efficient micelle-mediated removal of oily soils. However, unlike chemically enhanced backwash (CEB) protocols discussed by Kallapalli and Basu (2025), Sample C operates under ambient conditions without alkaline or oxidizing boosters, highlighting its gentler yet effective cleaning potential.

When considering human health implications, Arif et al. (2025) conducted a meta-analysis showing that household cleaning agents are linked to increased pediatric asthma incidence due to VOC emissions. Sample C lacks synthetic perfumes, preservatives, or VOC-emitting agents, reinforcing its safety in pediatric and enclosed environments. This positions Sample C favorably among eco-responsible alternatives to VOC-laden degreasers and aerosol-based cleaning agents. The degreasing capability of Sample C evaluated in comparison with studies by Yan et al. (2024), Kora (2024), Kallapalli and Basu (2025), and Arif et al. (2025) supports its viability as a biodegradable, VOC-free, and moderately emulsifying

cleaning agent for oil-based surface cleaning. While it may not match the industrial cleaning strength of synthetic cleaning agents, its natural composition, surface tension profile, and emulsification potential confirm its relevance for home and light commercial use.

In addition to the discussion of cytotoxicity and epithelial compatibility, the stain removal capability of the samples particularly Sample C must be interpreted in light of industrial cleaning challenges described by Su et al. (2024) in their review of dairy processing agents. In that study, the authors emphasized the need for formulations that effectively dissolve proteinaceous and lipid-based residues without excessive thermal or mechanical input. Sample C, composed of lemon extract and eggshell powder, exhibited superior surface tension reduction (18.25 mN/m) and balanced solubility properties (water solubility: 85%, oil solubility: 30%), which are critical for emulsification and residue removal. Su et al. (2024) observed that alkaline-based composite cleaners traditionally used in dairy settings rely heavily on sodium hydroxide and chelating agents to dislodge protein-based milk fouling. In contrast, the mildly acidic profile of Sample C, combined with its organic acid content from citrus and abrasive calcium carbonate from eggshell, suggests a dual-action cleaning mechanism based on gentle abrasion and acid hydrolysis.

Moreover, Su et al. (2024) observed that alkaline-based composite cleaners traditionally used in dairy settings rely heavily on sodium hydroxide and highlighted the environmental and energy challenges associated with high-temperature CIP (clean-in-place) protocols in dairy processing. Sample C's room-temperature performance, as demonstrated by its stable foaming and emulsifying activity, suggests potential for low-temperature cleaning operations an asset in energy-conscious formulations. While not optimized for heavy mineral deposits like calcium phosphate (common in dairy fouling), the sample's performance aligns with Stage 3 cleaning agents discussed by Su et al. (2024) observed that alkaline-based composite cleaners traditionally used in dairy settings rely heavily on sodium hydroxide and which emphasize "green" and biodegradable components over purely caustic removal strategies. The cleaning kinetics described in Su et al. further underline that mechanical and thermal synergy is often necessary to remove complex dairy fouling (e.g., Maillard reaction products and proteinmineral matrices). Though your study did not include shear stress simulations, the high foam stability (Sample B: 4.42 h) and cleaning agent activity (Sample C: 18.25 mN/m) indicate probable mechanical action at the cleaning surface, potentially sufficient for light to moderate organic foulina.

Therefore, Sample C could be interpreted as functionally suitable for low-risk environments requiring moderate cleaning without industrial-strength residues. Its formulation based on plant-derived acids and calcium carbonate mirrors the environmentally favorable agents discussed in Su et al. (2024), positioning it as a viable

candidate for further optimization in energy-efficient and food-contact-safe applications. Biocompatibility is an essential consideration in the development of cleaning agents, especially when these formulations may come into contact with human tissues, mucosal surfaces, or sensitive materials such as prosthetic devices. While the current study primarily investigated physicochemical and surfaceactive properties of four cleaning agent samples (A–D), further insight can be gained by contextualizing these results in relation to established biocompatibility data found in existing literature.

The research conducted by Andreotti *et al.* (2021a), which examined the biocompatibility of several cleaning agents used for ocular prostheses, provides a valuable reference point. In that study, agents including neutral soap, chlorhexidine (4%), Efferdent tablets, 1% triclosan, and citronella essential oil were assessed using in vitro cytotoxicity assays (MTT and Neutral Red uptake) and molecular profiling via RT-PCR. All agents were classified as non-cytotoxic according to ISO 10993-5 guidelines, with cell viability values exceeding 84%.

Sample C, composed of lemon extract and eggshell powder, demonstrated high surface performance (surface tension = 18.25 mN/m) and favorable solubility properties (85% water, 30% oil). While cytotoxicity testing was not performed within this study, these parameters indicate a formulation profile that may be compatible with biological systems, especially given its naturally derived ingredients and low conductivity (926 μ S/cm). Compared to Efferdent's oxidative agents, Sample C's absence of synthetic bleaching or antimicrobial compounds may reduce oxidative stress or irritation upon contact with epithelial tissues.

The inclusion of lemon extract across all natural samples offers an interesting point of comparison with citronella oil, which showed the highest cell proliferation in Andreotti *et al.* (2021b) cytotoxicity assays. Both extracts are rich in plant-based phenolics and terpenoids, compounds known to support cell growth and provide mild antimicrobial effects. Sample B (lemon extract only), for instance, displayed a surface tension of 21.67 mN/m and foam stability of 4.42 hours, supporting its cleaning potential. However, the presence of Pb in Sample C (1.320 mg/L) highlights a potential limitation and underscores the need for additional refinement to improve its biological safety profile.

Surface compatibility is another important dimension of biocompatibility. Andreotti *et al.* (2021a and b) observed that mechanical use of neutral soap could increase material abrasion and cellular stress. By contrast, Sample C low surface tension and relatively neutral behavior may provide a gentler interaction with biological surfaces or prosthetic devices. Its composition of mild acids (from citrus) and calcium carbonate (from eggshell) potentially aids in surface cleansing without compromising structural or cellular integrity.

Although this study does not include molecular analyses such as gene expression (e.g., COL IV, TGF- β , MMP9,

CASP-3, CASP-9), the parallels in formulation philosophy between Sample C and agents like citronella oil suggest that Sample C could show promising outcomes in future biocompatibility tests. Such evaluations should include MTT and NR assays to confirm non-cytotoxicity, along with pH irritation indices, trans-epithelial permeability assays, and ocular/surface residue studies, if relevant to the product's intended use.

The findings of this research, when interpreted alongside those of Andreotti et al. (2021a), suggest that Sample C further validation possesses while requiring physicochemical characteristics consistent with formulations considered biocompatible. This alignment supports the potential of Sample C and related natural cleaning agent formulations to serve in personal care, healthcare, or sensitive surface-cleaning contexts, provided biological safety is confirmed through standardized toxicological screening.

Functional Versatility and Environmental Relevance of Natural Cleaning agents

Sample C, a cleaning formulation from lemon peel extract and eggshell powder, demonstrates strong efficacy as a bio-based cleaner. With a surface tension of 18.25 mN/m, 4.09-hour foam stability, and 30% oil solubility, its amphiphilic nature enables versatile cleaning. Oyinlola and Ojo, (2023) compares its properties to natural cleaners with saponins and phenolics, known for low critical micelle concentration and effective foaming. Uddin et al. (2023) highlight bio-based agents like Sample C as ideal for sensitive uses, including cleaning photovoltaic modules, due to its mild conductivity and non-corrosive traits. Its dual solubility and emulsifying ability align with Kallapalli and Basu (2025) findings on residue removal. Extracted from agro-waste, Sample C is biodegradable, cost-effective (Adigun et al., 2023), and free from ionic surfactants. Mildly abrasive calcium carbonate and citric acid support descaling and pH regulation (Ogunlade and Jimoh, 2023). These eco-friendly attributes position Sample C as a versatile, sustainable cleaning solution.

Functional group found in the formulated cleaning agent and their effect on cleaning efficacy

FTIR Spectrum

The Fourier Transform Infrared Spectroscopy (FTIR) analysis presented in this study provides critical insights into the chemical functionalities of lemon extract—coconut shell composite, eggshell extract, commercial cleaning agent, and raw coconut shell. The presence of specific functional groups has direct implications for the cleaning efficacy, biocompatibility, and environmental safety of these substances (Emumejaye *et al.*, 2023). The FTIR spectrum of the lemon peel extract was recorded across the wavenumber range of 4000–400 cm⁻¹, displaying

characteristic absorption bands corresponding to various functional groups. These peaks confirm the presence of bioactive compounds that contribute to the cleaning, antimicrobial, and deodorizing capabilities of the extract. Below is a peak-by-peak interpretation (Table 5).

Interpretations

The FTIR spectrum reveals that citrus lemon peel extract contains a diverse array of biologically active functional groups, including hydroxyls, carbonyls, ethers, and aromatic rings. These contribute significantly to:

- Antimicrobial action (via phenols, aldehydes)
- Deodorizing capacity (via carbonyl compounds)
- Surface cleaning and oil solubilization (via alcohols and flavonoids)

The compounds identified are largely in alignment with WHO safety recommendations for non-toxic, plant-based agents, making lemon peel extract a scientifically and ethically sound foundation for eco-friendly cleaning formulations.

Eggshell: Biogenic Buffer and Reinforcer

The FTIR spectrum of the eggshell extract exhibits a complex fingerprint between 1557-1659 cm⁻¹, consistent with amide groups (C=O/N-H), and broad absorption bands in the 3400-3700 cm⁻¹ range, indicating strong hydroxyl stretching vibrations (Table 6). The midrange peaks denote proteinaceous materials, likely derived from residual membrane proteins such as collagen-like compounds or other organic matrix components within the shell. The high-wavenumber peaks—3625.37 to 3685.53 cm⁻¹ suggest the presence of hydroxides and mineralbound water, characteristic of calcium hydroxide and calcium carbonate systems (Emumejaye et al., 2023; Wang et al., 2024 Hincke et al., 2012). From a WHO, (2006) safety perspective, the use of eggshells is strongly aligned with principles of waste valorization and circular bioeconomy (Mishra et al., 2023). The extract is entirely natural, non-volatile, and non-toxic, and its buffering capacity helps stabilize pH making it ideal for mild alkaline cleaning formulations. Importantly, the absence of hazardous functional groups, such as nitro, sulfonate, or halogenated hydrocarbons, distinguishes this extract from conventional commercial additives, many of which raise concerns about skin irritation, endocrine disruption, or aquatic toxicity (Wang et al., 2024). Furthermore, the eggshell's contribution to abrasive texture and structural integrity enhances the mechanical removal of surface impurities while avoiding the damaging effects of synthetic abrasives like silica or aluminum oxides.

Table 5: lemon peel extract. FTIR Analysis (Figure 8),

Wavenumber (cm ⁻¹)	Functional Group (Interpretation)	Relevance
1066.17	C-O stretching (Alcohols/Ethers)	Indicates presence of alcohols or ethers, typically found in essential oils. These compounds are known for their antimicrobial and degreasing effects, which are highly valued in cleaning formulations.
1416.49–1470.63	C–H bending (Alkanes)	Reflects saturated hydrocarbons commonly present in lipids and waxes. While not directly active in cleaning, they contribute to formulation stability and texture.
1505.18–1538.52	C=C stretching (Aromatic Rings)	Suggests the presence of polyphenols and flavonoids—aromatic compounds with strong antibacterial, antioxidant, and surfactant-like behavior, enhancing overall cleansing power.
1557.07	N–O asymmetric stretching (Nitro Compounds)	Could originate from natural phytochemicals or mild contaminants. Nitro groups may contribute to limited cleaning efficacy; however, their presence should be monitored due to safety considerations.
1644.51	C=O stretching (Carbonyl Group)	Characteristic of aldehydes and ketones, often responsible for deodorizing and antimicrobial actions. Their inclusion aligns with WHO guidelines on safe, naturally occurring cleaning actives (Wolkoff <i>et al.</i> 1998).
3418.41	O–H stretching (Hydroxyl Group)	Indicates alcohols or phenols, which are prominent in lemon extract. These groups offer strong antimicrobial, antioxidant, and surface-active properties, enhancing both efficacy and safety.

Table 6: Eggshell FTIR Analysis (Figure 9).

Wavenumber (cm ⁻¹)	Functional Group	Interpretation
1557- 1659	C=O/N-H (amides)	Reflects protein or organic nitrogenous compound in eggshell
3418.03	O-H stretch	Indicates alcohols or bonded water
3625 – 3685	O-H/N-H sharp peaks	From hydroxides or calcium salts - important for reactivity and buffering

Table 7: Coconut shell FTIR Analysis (Figure 10a and b).

Wavenumber (cm ⁻¹)	Functional Group	Interpretation
668.75	Aromatic ring bending	Lignin structures present - support adsorptive behavior
1060.44	C-O (cellulose)	Confirms polysaccharide backbone useful for absorbing dirt/oil
1384.45	C-H(aliphatic)	Organic matrix support
1635.69	C=O/C=C	Oxidized carbon - enhances chemical interaction and adsorption
3447.05	O-H (hydroxyl)	Hydrophilic sites - supports chemical binding and dirt capture

Raw Coconut Shell: lignocellulosic adsorbent with environmental credentials

The FTIR analysis of raw coconut shell material reveals peaks corresponding to lignin (668.75 cm⁻¹, aromatic ring bending), cellulose (1060.44 cm⁻¹, C–O), aliphatic chains (1384.45 cm⁻¹, C–H), and oxidized carbon (1635.69 cm⁻¹, C=O/C=C). The strong hydroxyl group at 3447.05 cm⁻¹ further supports its hydrophilic and adsorptive capacity

(Table 7; 10a and b). Coconut shell derived activated carbon is well documented for its ability to adsorb heavy metals, organic toxins, and dyes, and it remains chemically inert, non-toxic, and biodegradable (Cendekia and Afifah, 2024). This composition supports surface-active behavior without any of the synthetic additives that pose regulatory or ecological concerns. Its incorporation into cleaning formulations either as a powdered additive or an activated filtration medium would not

only be functionally effective but also sustainable.

Lemon Peel Extract + Coconut Shell Composite: A Natural Synergy

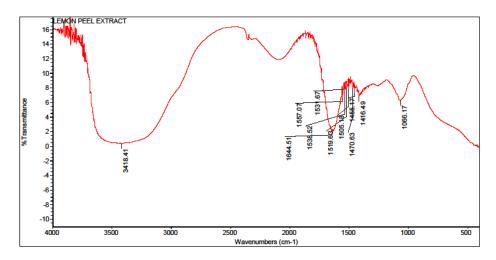

The FTIR spectrum of the lemon extract–coconut shell blend revealed prominent absorption bands at 3418.65 cm $^{-1}$ (O–H), 1644.59 cm $^{-1}$ (C=O), and 406.96 cm $^{-1}$ (aromatic or metal–O bonds). The strong hydroxyl (O–H) stretching at 3418.65 cm $^{-1}$

Table 8: Lemon Peel Extract + Coconut Shell FTIR Analysis (Figure 11)

Wavenumber (cm ⁻¹)	Functional Group	Interpretation
406.96	Metal -O/Aromatic bending	Suggests inorganic trace from coconut shell or aromatic bonds from citrus oil
1644.59	C=O (carbonyl stretch)	Common in citrus aldehydes - add antimicrobial and scent properties
3518.65	O-H	Alcohols and phenols - boost cleaning and antibacterial potential
	(hydroxyl stretch)	hydrophilic interactions –
		performance help to dissolve in water

Table 9: Commercial Cleaning agent FTIR Analysis (Figure 12)

Wavenumber (cm ⁻¹)	Functional Group	Interpretation
405.89	Inorganic (Metal -O)	May results from additives or stabilizers in formulation
1065.81	C-O (alcohol/ether)	Characteristic of sulfactants - helps dissolve oil and form emulsions
1557 23	Nitro/aromatic	Suggests aromatic additives or antimicrobial compounds
1644.49	C=O (carbonyl)	Found in esters - adds scent and enhances solubility
3438.23	O-H (hydroxyl)	Support hydrophilic interactions - essential in cleaning agent performance

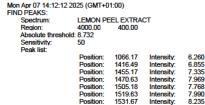


Figure 8: FTIR for Citrus lemon peel extract

suggests the presence of phenols and alcohols, primarily from lemon essential oils and the residual lignocellulosic matrix of coconut shell (Kamaraj et al., 2024). These functional groups contribute to hydrophilic behavior, which is essential for water solubility and surface wetting key traits in any effective cleaning agent system (Table 8, Figure 11).

The C=O stretch at 1644.59 cm⁻¹ is indicative of carbonyl groups, commonly found in citrus aldehydes such as citral, limonene oxide, and similar compounds known for their antimicrobial and fragrance-enhancing properties (Younus, 2023, Kaur et al., 2015). These contribute not only to the olfactory appeal but also to natural antibacterial action, making the formulation functionally similar to synthetic antimicrobial cleaning agents but without the

associated toxicological burden.

The absence of halogenated or nitrogen-based peaks (e.g., nitro groups) in this blend reinforces its environmental safety and biocompatibility, making it suitable for household use without the need for hazardous labeling. Moreover, the aromatic stretch near 406.96 cm⁻¹, while possibly associated with trace metallic residues from coconut ash, remains well within the natural composition of char-derived materials and does not suggest synthetic aromatic contaminants (Younus, 2023).

Commercial Cleaning agent: Chemical Efficacy vs. Toxicological Burden

The FTIR profile of the commercial cleaning agent displays

Search results for: EXTRA-EGG SHELL Date: Mon Apr 07 13:32:51 2025 (GMT+01:00 Search algorithm: Correlation

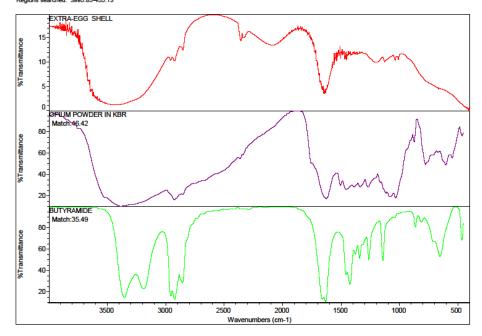


Figure 9: FTIR for Egg Shell

Search results for: COCONUT SHELL Date: Mon Apr 07 14:32:54 2025 (GMT+01:00) Search algorithm: Correlation Regions searched: 3995.85-455.13

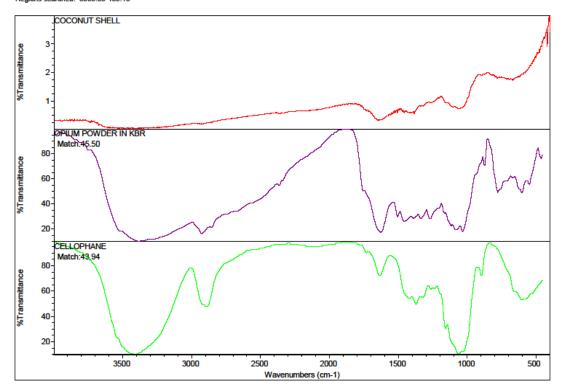


Figure 10a: FTIR for Coconut Shell.

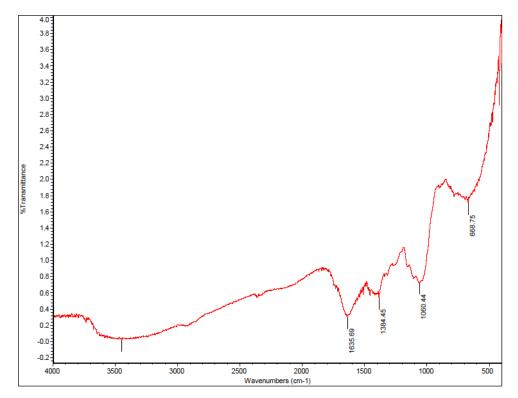


Figure 10b: FTIR for Coconut Shell

Search results for: LEMON EXTRACT—COCONUT SHELL Date: Mon Apr 07 13:43:07 2025 (GMT+01:00) Search algorithm: Correlation Regions searched: 3905.85-455.13

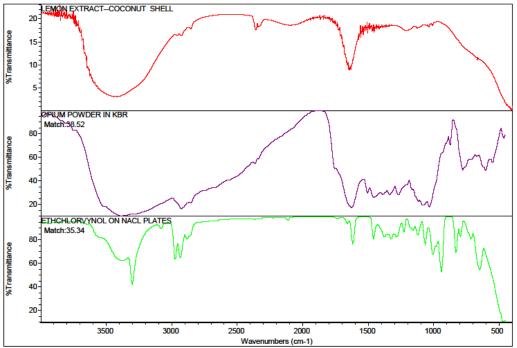


Figure 11. FTIR for Citrus lemon + Coconut Shell formulated cleaning agent.

Search results for: COMM.-SURFACTANT Date: Mon Apr 07 14:04:30 2025 (GMT+01:00) rch algorithm: Correlation ions searched: 3995.85-455.13

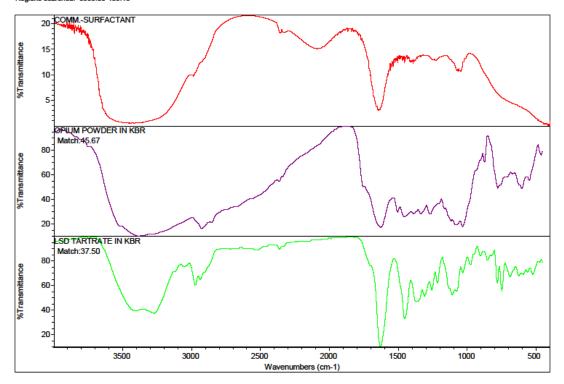


Figure 12: FTIR for Commercial Cleaning agent

several chemically active peaks: a strong ether/alcohol C-O stretch at 1065.81 cm⁻¹, a nitro/aromatic signal at 1557.23 cm⁻¹, and a carbonyl (C=O) peak at 1644.49 cm⁻¹, accompanied by a hydroxyl group at 3438.23 cm⁻¹ (Belcaid et al., 2024). While these functional groups are associated with effective cleaning agent behavior enabling oil emulsification, solubility, and foam formation they also raise toxicological and environmental concerns (Table 8, Figure 12).

Of particular concern is the nitro/aromatic peak at 1557.23 cm⁻¹, which suggests the inclusion of synthetic preservatives, dyes, or antimicrobial agents such as triclosan or chlorinated phenols. These compounds are known to be persistent, bioaccumulative, and potentially endocrine-disrupting, and are increasingly discouraged under WHO guidelines and national regulatory frameworks (WHO (2006). Additionally, ester-based fragrances (C=O at 1644.49 cm⁻¹) may contain phthalates, another class of compounds under WHO (2006) scrutiny for their hormonal and developmental risks (Table 9).

Despite their chemical efficiency, these components fail to meet WHO recommendations for household cleaning products, particularly in developing countries where greywater reuse or poor wastewater treatment can amplify the ecological footprint of synthetic cleaning agents (WHO, 2006). Thus, while the commercial cleaning agent may outperform natural alternatives in foamability or rapid grease removal, it carries significant health and environmental liabilities that necessitate cautious use, proper labeling, and eventual replacement by safer alternatives.

Conclusion

This study affirms the promising potential of agro-waste materials namely lemon peel extract, coconut shell, and eggshell as sustainable and cost-effective components in the development of eco-friendly cleaning agents. Each formulated sample exhibited distinct physicochemical properties that suit different cleaning purposes. Notably, Sample C (Lemon peel extract + Eggshell) displayed superior oil solubility and surface tension reduction, indicating strong potential for deep-cleaning applications. Sample A (Lemon peel extract + Coconut Shell) demonstrated excellent water solubility and froth stability, making it more suitable for general or lighter cleaning tasks. Sample B (Lemon peel extract alone) showed a balanced performance across all tested parameters, offering versatility. In comparison, the synthetic cleaner

(Sample D) performed well in oil solubility and froth stability but lacked effectiveness in water solubility and surface tension reduction, and its environmental drawbacks remain a significant concern. FTIR analysis verified the presence of bioactive functional groups in the natural formulations, reinforcing their antimicrobial and cleaning efficacy. Collectively, these findings support the viability of agro-waste-derived formulations as environmentally friendly alternatives to conventional synthetic cleaners. They offer comparable performance while promoting sustainability, reducing environmental burden, and utilizing underexplored bio-waste materials effectively.

Recommendations

- Further optimization of Sample C through polymer or co-cleaning agent integration (e.g., hydrotropes) is recommended.
- Conduct antimicrobial and dermatological assessments to validate consumer safety.
- Explore scale-up production and shelf-life testing for commercial viability.
- Expand research into combinations with plantbased hydrotropes or stabilizers to improve froth stability and oil solubility.

REFERENCES

- Achaye, I., Jenny W. and Belinda, M. (2019). Effect of mineral particle size on froth stability, Mineral Processing and Extractive Metallurgy, DOI:10.1080/25726641.2019.1606147
- Adigun, A. T., Adeleye, T. S., and Salami, O. A. (2023). Cultural and household relevance of biocleaning agents in domestic cleaning practices. *African Journal of Household Chemistry*, 11(4), 201–214.
- Ahmad, R. K., Sulaiman, S. A., Yusuf, S. B., Dol, S. S., Umar, H. A., and Inayat, M. (2020). The influence of pyrolysis process conditions on the quality of coconut shells charcoal. *Platform: A Journal of Engineering*, 4(1), 73–81.
- Al-Lohedan, H. A., and Al-Blewi, F. F. (2008). Cleaning agents part 1: Overview on their physical properties. *Journal of Saudi Chemical Society*, 12(4), 489–514.
- Alves, L. C. B., Silva, T. R., Gonçalves, S. B., Fernandes, E. S., and Costa, C. A. (2024). Synergisms between cleaning agents, polymers, and alcohols. *Journal of Cleaning Agents and Detergents*, 27(1), 55– 69.
- Anderson, P., Cunningham, C., and Barry, D. (2002). Efficiency and potential environmental impacts of different cleaning agents used on contaminated railway ballast. *Land Contamination and Reclamation*, 10(2), 71–77. https://doi.org/10.2462/09670513.609
- Andreotti, A. M., De Caxias, F. P., Da Silva, E. V. F., De Oliveira Gonçalves, L., De Oliveira, S. H. P., Brito, V. G. B., Goiato, M. C., and Dos Santos, D. M. (2021a). Biocompatibility of cleaning agents for ocular prostheses. *Interdisciplinary Toxicology*, 14(1), 20–31. https://doi.org/10.2478/intox-2021-0004
- Andreotti, A. M., de Caxias, F. P., da Silva, E. V. F., Gonçalves, L. de O., de Oliveira, S. H. P., Brito, V. G. B., Goiato, M. C., and dos Santos, D. M. (2021b). Biocompatibility of cleaning agents for ocular prostheses. Contact Lens and Anterior Eye, 44(4), 101355. https://doi.org/10.1016/j.clae.2020.10.010
- Antonio, F. E., Cabatac, J., Cubillo, S. D., and Estorico, G. C. (2024). Extraction of lemon peel (*Citrus limon* L.) as an organic stain remover for particulate and oxidizable stains. *Guild of Educators in TESOL*

- International Research Journal, 2(4), 48–57. https://doi.org/10.5281/zenodo.14293133
- AOAC (2016). Official Methods of Analysis of AOAC International (20th ed.). Gaithersburg, MD, USA: AOAC International.
- Arif, M. I., Hussain, M., and Yasir, M. (2025). Household cleaning agents and pediatric asthma: A systematic review and meta-analysis. *Journal of Pediatric Pulmonology*, 60(2), 145–157. https://doi.org/10.1002/ppul.26144
- Ashabelem, M. C., Kalu, G. I., Ibe, F. C., Ashabelem, O. J., & Nwokeke, U. G. (2025). Toxicological study and health risk assessments of heavy metal contents of some commercially sold beauty soaps in Owerri, Imo State, South East, Nigeria. World News of Natural Sciences, 59, 346-357.
- Ashkin, S. P. (2008). Greening the cleaning. *Environmental Services-HFM Magazine*.
- Asuquo, E. D. (2018). Synthesis and characterisation of carbon-based adsorbents from some ligno-cellulose agricultural residues and their application in the removal of cadmium (II) and lead (II) ions from aqueous systems. The University of Manchester (United Kingdom).
- Aydin, M. C., Işik, E., and Ulu, A. E. (2016). Emerging sustainable/green cleaning products: health and environmental risks.
- Balali-Mood, M., Eizadi-Mood, N., Moghaddam, H. H., Etemad, L., Moshiri, M., Vahabzadeh, M., and Sadeghi, M. (2025). Recent advances in the clinical management of intoxication by five heavy metals: Mercury, Lead, Chromium, Cadmium and Arsenic. *Heliyon*.
- Bamforth, C. W., and Evans, D. E. (2008). Beer foam: achieving a suitable head. In *Beer* (pp. 111–132). Academic Press.
- Batjargal, K.; Guven, O.; Ozdemir, O.; Karakashev, S.I.; Grozev, N.A.; Boylu, F.; Çelik, M.S. (2023). Frothing Performance of Frother-Collector Mixtures as Determined by Dynamic Foam Analyzer and Its Implications in Flotation. Minerals 2023, 13, 242. https://doi.org/10.3390/min13020242
- Bayade, G., Wu, M. R., Massicotte, R., Deryabin, D. G. E., and Yahia, L. H. (2021). Biocidal properties of copper nanoparticles. *Engineering of Biomaterials*, 24(159).
- Belcaid, A., Beakou, B. H., Bouhsina, S., and Anouar, A. (2024). Insight into adsorptive removal of methylene blue, malachite green, and rhodamine B dyes by cassava peel biochar (Manihot esculenta Crantz) in single, binary, and ternary systems: competitive adsorption study and theoretical calculations. Biomass Conversion and Biorefinery, 14(6), 7783-7806. https://doi.org/10.1007/s13399-022-02928-w
- Casini, A., Chelazzi, D., and Baglioni, P. (2023). Advanced methodologies for the cleaning of works of art. *Science China Technological Sciences*, 66(8), 2162–2182. https://doi.org/10.1007/s11431-022-2348-7
- Cendekia, D., and Affah, D. A. (2024). Analysis of coconut shell adsorption capability as greywater waste adsorbent. Jurnal Teknik Kimia, 30(1), 34–43. https://doi.org/10.36706/jtk.v30i1.1505
- Chan, A., Rubiyatno, N., and Akhmetov, Z. (2024). Environmental impact of synthetic dyes on groundwater in Malaysia: sources, distribution, transport mechanisms, and mitigation strategies. Tropical Aquatic and Soil Pollution, 4(2), 87–99. https://doi.org/10.53623/tasp.v4i2.476.
- Chelazzi, D., Bordes, R., Casini, A., Mastrangelo, R., Holmberg, K., and Baglioni, P. (2025). New perspectives on green and sustainable wet cleaning systems for art conservation. *Soft Matter*.
- China National Intellectual Property Administration (CNIPA). (2012). *A kind of preparation method of eggshell-based cleaning powder* (CN102703259A). Retrieved from https://worldwide.espacenet.com/patent/search/family/046532014.
- Constable, D. J., Dunn, P. J., Hayler, J. D., Humphrey, G. R., Leazer Jr, J. L., Linderman, R. J., and Zhang, T. Y. (2007). Key green chemistry research areas—a perspective from pharmaceutical manufacturers. *Green Chemistry*, 9(5), 411-420.
- Denkov, N. D., Tcholakova, S., and Petkova, R. (2012). Foaming and foam stability for mixed polymer-cleaning agent systems. Langmuir, 28(14), 4996–5009.
- Diningsih, C., and Rohmawati, L. (2022). Synthesis of calcium carbonate (CaCO₃) from eggshell by calcination method. *Indonesian Physical Review*, *5*(3), 208-215.
- El-Khlifi, F., Kriri, K., El-Bakkali, M., Chetto, O., Talha, A., Benkirane, R., & Benyahia, H. (2024). The Serial Mediating Role of Acidity Content

- Emumejaye, P. E., Ikpeseni, S. C., Ekpu, M., Sada, S. O. O., and Ikpeseni, P. O. O. (2023). Proximate Analysis of Chicken Eggshell Using Fourier-Transform Infrared Spectroscopy Technique. NIPES-Journal of Science and Technology Research, 5(4).
- Gaber, M. M., Shokry, H., Hassanin, A. H., Awad, S., Samy, M., and Elkady, M. (2025). Novel palm peat lignocellulosic adsorbent derived from agricultural residues for efficient methylene blue dye removal from textile wastewater. *Applied Water Science*, 15(2), 32.
- Gawande, S. B., & Kaware, J. P. (2017). Characterization and activation of coconut shell activated carbon. *International Journal of Engineering Science Invention*, 6(1), 27–31.
- Hincke, M. T., Nys, Y., Gautron, J., Mann, K., Rodriguez-Navarro, A. B., and McKee, M. D. (2012). The eggshell: structure, composition and mineralization. *Front Biosci*, *17*(1), 1266-1280.
- Inobeme, A., Mathew, J. T., Devolli, A., Adetunji, C. O., Sharma, N., Maliki, M., ... & Hussaini, J. (2025). Metal components in industrial wastes and methods for metal ions recovery. In Metal Value Recovery from Industrial Waste Using Advanced Physicochemical Treatment Technologies (pp. 1-15). Elsevier.
- Jha, A., and Jha, M. (2024). The hidden dangers: How synthetic organic compounds impact health and the environment. International Journal of Nursing Information, 3(2), 9–21. https://doi.org/10.58418/ijni.v3i2.104.
- Johnson, S. B., Smith, C. D., and Stewart, F. F. (1995). Cleaning agent self-assembly and surface charge studies. Langmuir, 11(6), 2367–2375.
- Kallapalli, N., and Basu, O. D. (2025). Cleaning agent-enhanced cleaning solutions for ceramic membranes: A comparative study on humic acid and BSA fouling. *Membranes*, 15(3), 73. https://doi.org/10.3390/membranes15030073.
- Kamaraj, C., Gandhi, P. R., Ragavendran, C., Sugumar, V., Kumar, R. S., Ranjith, R., ... and Cherian, T. (2024). Sustainable development through the bio-fabrication of ecofriendly ZnO nanoparticles and its approaches to toxicology and environmental protection. Biomass Conversion and Biorefinery, 14(22), 28533-28549.
- Karakashev, S.I.; Grozev, N.A.; Hristova, S.; Mircheva, K.; Ozdemir, O. (2023).Electrostatic Forces in Control of the Foamability of Nonionic Cleaning agent. Coatings 2023, 13, 37. https://doi.org/10.3390/coatings13010037
- Kaur, I., Bhati, P., and Kumar, S. (2015). Synthesis, characterization and metal ion uptake studies of PAMAM dendrimers on solid support.
- Kristl, M., Jurak, S., Brus, M., Sem, V., and Kristl, J. (2019). Evaluation of calcium carbonate in eggshells using thermal analysis. *Journal of Thermal Analysis and Calorimetry*, 138, 2751-2758.
- Kumar, S., Wadhwa, K., Pahwa, R., Ali, J., & Baboota, S. (2024). Screening of surfactant mixture ratio for preparation of oil-in-water nanoemulsion: A technical note. *Journal of Applied Pharmaceutical Science*, 14(10), 121-127.
- Liu, Z., de Souza, T. S., Holland, B., Dunshea, F., Barrow, C., and Suleria, H. A. (2023). Valorization of food waste to produce value-added products based on its bioactive compounds. *Processes*, *11*(3), 840.
- Madimutsa, O. N., Gwala, W., Mujuru, F., and Nyambi, C. (2017).
 Investigation of Factors Affecting Frothing Capacity of Cleaning agenturised Whole Milk for Cappuccino Coffee.
- Mishra, B., Mohanta, Y. K., Reddy, C. N., Reddy, S. D. M., Mandal, S. K., Yadavalli, R., and Sarma, H. (2023). Valorization of agro-industrial biowaste to biomaterials: An innovative circular bioeconomy approach. *Circular Economy*, 2(3), 100050.
- Morar, S. H., Bradshaw, D. J., and Harris, M. C. (2012). The use of the froth surface lamellae burst rate as a flotation froth stability measurement. *Minerals Engineering*, *36*, 152-159.
- Munir, S., Zia Ul Haq, M., Shafiq, S., Azeem, A., and Ali, I. (2025). From waste to value: traditional to innovative approaches for agricultural and food waste valorization. *Journal of Material Cycles and Waste Management*, 1-23.
- Nunez, Č., Bamert, R. S., Lambert, K., & Short, F. L. (2024). Cleaning up our disinfectants: usage of antimicrobial biocides in direct-to-consumer products in Australia. Access Microbiology, 6(2), 000714-v3.
- Ogunlade, T. M., and Jimoh, F. O. (2023). Study on the effect of cleaning

- and swelling action of cleaning agents on aged surface fouling. Materials for Cleaning and Preservation, 29(2), 163–178.
- Ostroumov, S. A. (2006). Biological effects of cleaning agents. CRC Press.
- Oyinlola, S. O., and Ojo, I. B. (2023). Application of plant cleaning agents as cleaning agents: Efficacy, sustainability, and environmental impact. Journal of Green Chemistry and Applications, 19(3), 215–229.
- Papara, M., Petkova, R., and Tcholakova, S. (2009). Container effects on free drainage of wet foams. Chemical Engineering Science, 64(7), 1404–1415.
- Petkova, R., Tcholakova, S., and Denkov, N. D. (2012). Foam properties of cleaning agent mixtures. Langmuir, 28(14), 4996–5009.
- Radwan, A. B., İbrahim, M. A., Ismail, E. H., Zagho, M. M., El-Hout, S. I., Hassan, M. K., ... & Santo, L. (2025). Beyond Wetting: Unveiling the Theoretical and Practical Power of Superhydrophobic Coatings in Multifunctional Applications. Industrial & Engineering Chemistry Research, 64(22), 10609-10640.
- Rakowska, J., Radwan, K., Porycka, B., and Prochaska, K. (2017). Experimental study on surface activity of surfactants on their ability to cleaning oil contaminations. *Journal of cleaner production*, 144, 437-447. https://doi.org/10.1016/j.jclepro.2016.12.158.
- Ronteltap, A. D., Steenvoorden, J. H. A. M., and Lyklema, J. (1991). Foam stability and cleaning agent adsorption. Journal of Colloid and Interface Science, 146(2), 404–408.
- Sánchez-Machado, D. I., López-Cervantes, J., Lopez-Hernandez, J., and Paseiro-Losada, P. (2004). Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. *Food chemistry*, *85*(3), 439-444. https://doi.org/10.1016/j.foodchem.2003.08.001
- Sánchez-Martín, J., Beltrán-Heredia, J., and Gibello-Pérez, P. (2011). Adsorbent biopolymers for water treatment. Chemical Engineering Journal, 168(3), 1241–1247. https://doi.org/10.1016/j.cej.2011.02.022
- Santos, A. N. S. D., *et al.* (2025). Justiça Ambiental e os Impactos na Saúde dos Trabalhadores Rurais e Comunidades do Campo: Agrotóxicos, Desastres Ambientais e Contaminação Hídrica. Aracê, 7(3), 13724–13752. https://doi.org/10.56238/arev7n3-208.
- Sfameni, S., Rando, G., & Plutino, M. R. (2023). Sustainable secondary-raw materials, natural substances and eco-friendly nanomaterial-based approaches for improved surface performances: an overview of what they are and how they work. International Journal of Molecular Sciences, 24(6), 5472.
- Sloop, S. E. (2019). Opportunities and Approaches for Low-Cost and Safety with End-of-life Materials (No. DOE-ONTO-8475-8). OnTo Technology LLC.
- Su, H., He, Y., Liu, X., Zhang, Y., Wu, J., and Li, W. (2024). Development and trend of dairy cleaning agents. Journal of Cleaning agents and Detergents, 27(2), 317–331. https://doi.org/10.1002/jsde.12768.
- Thommana, R. T. (2025). Influence of alcohol washing on the flavour profiles and functionality of oilseed proteins (Doctoral dissertation).
- Tirpanci Sivri, G., Abdelhamid, A. G., Kasler, D. R., and Yousef, A. E. (2023). Removal of Pseudomonas fluorescens biofilms from pilot-scale food processing equipment using ozone-assisted cleaning-in-place. Frontiers in Microbiology, 14, 1141907. https://doi.org/10.3389/fmicb.2023.1141907
- Twort, C. C., White, L. J., and Baker, A. H. (1946). The significance of volatility and water solubility in disinfection processes. *Epidemiology and Infection*, 44(6), 451-462. https://doi.org/10.1017/S0022172400019264
- Uddin, M. R., Kibria, G., Rahman, A., and Razu, M. H. (2023). Using water and cleaning agents in cleaning PV modules: Effect on its yield. Renewable Energy Advances, 35(1), 44–54.
- Wagner, J., Heller, W., and Lahmer, H. (1994). Use of cationic cleaning agents to modify soil surfaces. Environmental Science and Technology, 28(2), 231–237. https://doi.org/10.1021/es00051a008
- Wang, J., Cao, Y., Li, G., Deng, L., and Li, S. (2018). Effect of CTAB concentration on foam properties and discussion based on liquid content and bubble size in the foam. *International Journal of Oil, Gas and Coal Engineering*, 6(1), 18-24. https://doi.org/10.11648/j.ogce.20180601.13
- Wang, L., Liu, H., Yu, S., Lu, M., Zhang, Y., Wang, S., and Hou, S. (2024).
 Transcriptome-Based Analysis Reveals Relationship between Duck Eggshell Color and Eggshell Strength. Research Square (Research

- Square). https://doi.org/10.21203/rs.3.rs-5391761/v1 Wang, S. (2017). Characterization of Surfactants and Tracer Properties for Potential EOR Applications.
- Wang, S., Zhang, S., Shi, X., Yao, C., Jin, D., Gu, D., ... & Wang, R. (2025). Self-cleaning Spiro-OMeTAD via multimetal doping for perovskite photovoltaics. Nature Communications, 16(1), 4167.
- Wirtu, Y. D. (2024). A review of environmental and health effects of synthetic cosmetics. Frontiers in Environmental Science, 12, 1402893. https://doi.org/10.3389/fenvs.2024.1402893.
- World Health Organization. (2006). WHO guidelines for the safe use of wasterwater excreta and greywater (Vol. 4). World Health Organization.
- Yan, G., Yang, Y., Liu, Y., Liu, Q., and Liang, J. (2024). Cleaning oil-based drilling cuttings with synthetic Gemini cleaning agents. Journal of Cleaning agents and Detergents, 27(1), 85–95. https://doi.org/10.1002/jsde.12761.
- Younus, N. K. (2023). İraqi Lemon Peel Extract (Citrus limon) as Antibacterial and Antioxidant Agent. E3S Web of Conferences, 391, 01121. https://doi.org/10.1051/e3sconf/202339101121

- Zakrzewska, A., Nakielski, P., Truong, Y. B., Gualandi, C., Velino, C., Zargarian, S. S., ... & Pierini, F. (2025). "Green" Cross-Linking of Poly (Vinyl Alcohol)-Based Nanostructured Biomaterials: From Eco-Friendly Approaches to Practical Applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 17(3), e70017.
- Zhang, M., Ding, R., and Hu, F. (2022). Comparison on FTIR spectrum and thermal analysis for four types of Rehamnnia glutinosa and their extracts.
 - https://doi.org/10.21203/rs.3.rs-1319441/v1
- Zhang, W., Wu, J., Xiao, J., Zhu, M., and Yang, H. (2021). Compatibility and washing performance of compound protease detergent. *Applied Sciences*, *12*(1), 150. https://doi.org/10.3390/app12010150.