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ABSTRACT: The daily rise in female instances of breast cancer (BC) is largely due to misinformation and late-stage detection. Effective treatment
for BC can only be administered by correctly diagnosing cancer in its very early stages of development. BC classification has been discovered to
be accelerated and automated using deep learning models and medical image analysis techniques. However, these techniques, which are crucial
for numerous other applications outside broad visual identification, usually use generic traits. Since the primary objective of deep learning
models is to characterize complex boundaries of hundreds of classes in deep space, embracing higher-order qualities is essential for improving
non-linear modeling abilities. This study employs the publicly available BreakHis to provide an end-to-end hybrid ensemble model for BC multi-
classification utilizing an attention-based global second-order pooling network. Ensembling is accomplished by adding an attention-based second-
order pooling network in the form of a convolutional layer to the separate models to increase their non-linear modeling skills before
concatenating their output features. Finally, the output features are relied on a classification layer for the final forecast. The proposed model
produced enhanced results for binary and multiclass (four classes and eight classes) classification with 97.6% (40x), 95.5% (100x), 96.6 (200x) and
95.9% (400x) accuracy for the eight classes experiment. The experimental results show that, when compared to state-of-the-art models, the
proposed approach obtains the best BC multi-classification accuracy.

Keywords: Breast Cancer; Attention Mechanism; Second-Order Pooling; Ensemble model; Multi-classification

INTRODUCTION

The whole human race is afflicted with terrible diseases,
such as Breast Cancer (BC) in women. BC is reportedly

and attended to by specialists in the initial phases and be
cured (Sabtu et al., 2019). Hence, making a precise and

the second most lethal kind of disease that affects
women, according to the World Health Organization
(WHO) (2014) and the latest report of 36 different
malignancies, with recently diagnosed cases nearing a
rate of 7.3% and a death rate of 6.9% (Sung et al., 2020.
According to estimates, 90% of BC might be discovered

prompt detection of this fatal illness is very essential to
reduce the mortality rate. Medical imaging serves as a
useful technique for identifying the presence of different
medical disorders and evaluating research results.
Biomedical imaging plays a critical role in the cancer
treatment process. BC can be analyzed and found using
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imaging modalities (Zhang et al.,2019) such as diagnostic
mammography  (X-rays), ultrasound (sonography),
magnetic resonance imaging (MRI), and thermography.
The suggested study makes use of ultrasound images.
Effectively identifying and pinpointing cancerous cells in
BC images is extremely challenging since cancerous
cells have distinct sizes, forms, and positions. Diagnoses
of a patient might have several result interpretations from
a different pathologist. Research found that the
diagnostic discrepancy between several examiners
utilizing tissue samples was around 25% (Ukwuoma et
al., 2022a; Ukwuoma et al., 2022b; Elmore et al., 2015).
Histopathology images are typically utilized to diagnose
BC (Veta et al., 2014). In recent times, several studies
have proposed a variety of methods for the automated
categorization of cells in BC diagnosis. Machine learning
(ML) and deep learning (DL) are now being widely used
to simplify the manual assessment of several diseases
making it easier for pathologists (Budd et al., 2021; Umer
et al., 2021). The core elements of modern deep learning
models that are required for accurate and effective
classification are image pre-processing and attribute
extraction. The method used in deep learning is capable
of recognizing characteristics by employing layers of
neural networks. Medical diagnosis using Deep
Convolution  Neural Networks (DCNN) showed
encouraging results (Ukwuoma et al.,, 2022), hence
incorporating DCNN models into BC image analysis
using histopathological images will fasten the rate of BC
as well as an accurate method. In order to accurately
classify breast cancer histopathology images utilizing
publicly accessible datasets like BreakHis (Man et al.,
2020) and BACH (Pimkin et al., 2018) datasets, recent
studies have deployed DCNN models (Ukwuoma et al.,
2022c¢; Ukwuoma et al., 2022d; Ukwuoma et al., 2022¢)
which are pre-trained on the ImageNet. Corresponding to
this, the majority of studies of the BACH competition
(Pimkin et al., 2018) used a single pre-trained model or a
collection of pre-trained models to classify breast
histopathology images into many categories. Despite
ongoing research on breast cancer technologies, the
feature extraction method used by the suggested models
makes it difficult to correctly identify or categorize breast
disorders. Also, several studies have been identified to
have been conducted in the binary categorization of
histopathological images. However, only a few methods,
primarily based on four classes, have been presented for
the multi-classification of histopathological images. These
methods' classification accuracy was subpar since they
solely took into account texture-based extracted
characteristics. Additionally, the multiclass classification
of breast cancer into eight classes is seldom discussed
because of the striking similarities across the eight
classes of breast cancers. It is a very difficult assignment
to properly categorize breast cancer into eight classes
because of the considerable commonality in the input
images of various classes of the disease.

Sequel to the identified research gap, this paper
addresses the identified problems by proposing an
accurate and enhanced deep learning feature extraction
framework for breast cancer image multi-classification via
two, four and eight classes. This study uses the publicly
accessible BreakHis to offer an end-to-end hybrid
ensemble model for BC multi-classification using an
attention-based global second-order pooling network.
The ensembling is done by introducing an attention-
based second-order pooling network in form of a
convolutional layer to the single models to improve their
non-linear modeling capabilities before concatenating
their output features. Finally, the output features are
based on a Softmax layer for prediction. In addition, we
reviewed several pre-trained models (deep learning
models) capabilities in breast cancer diagnosis, after
which three models (DenseNet201, ResNet110 and
Xception) were selected for our model building. We
highlight the contribution of this manuscript thus;

*We developed an Attention-based end-to-end hybrid
ensemble model for BC Multi-classification.

eThis research introduced a spatial attention-based
second-order  pooling network for  higher-order
quantitative feature extraction, considering that pre-
trained models are based on first-order quantitative
characteristics of the input images. In order to represent
the spectral-structural information of breast cancer
images, the first-order feature mechanism was carried
out whereas a second-order pooling mechanism with an
attention-based architecture is employed to simulate
relevant and discriminatory characteristics

eThis research went ahead to present a comprehensive
study of pre-trained models including binary classification
and Multi-class (Four classes and Eight classes) of the
proposed model.

The rest of the manuscript is structured in the following
manner: Section 2 examines previous research in the
field, while Section 3 presents a brief summary of the
proposed approach. Section 4 looks at the experimental
outcomes, including performance assessment,
discussion of results, and a comparison with the latest
models. Lastly, Section 5 concludes the paper and
explores possible avenues for future research.

Related works

Early detection and classification are crucial in reducing
the death rate from breast cancer, which is the most
commonly diagnosed cancer worldwide. Various deep-
learning techniques have been suggested for the
automatic diagnosis and classification of breast cancer.
One of these techniques is a six-branched CNN model
proposed by Umer et al., (2022) which employs a deep
feature fusion and selection method for multiclass breast
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cancer classification. Histopathology images are used to
diagnose breast cancer in the majority of cases (Veta et
al.,, 2014b). With advancements in computer technology,
artificial Intelligence techniques are being extensively
used to automate the manual diagnosis of various
diseases. Wang et al. (2021) introduced a deep feature
fusion and enhanced routing-based automatic
classification approach for breast cancer
histopathological images. They developed a network with
two parallel channels that can simultaneously obtain
convolution features and capsule features. Yan et al.
(2019) also proposed a hybrid technique of convolutional
and recurrent deep neural networks for histopathological
image classification.

Identifying the computational expense as an obstacle to
accurately categorizing cancer via convolutional neural
networks, Albashishet al. (2021) proposed a transfer
learning model that relied on the VGG 16-layer deep
model architecture to obtain advanced features from the
BreakHis benchmark histopathological image dataset, as
a solution to this problem. Singh et al., (2021) used
transfer learning techniques with VGG-19 as the base to
classify imbalanced histopathological images. To help in
the automatic identification and diagnosis of breast
cancer, likewise, Arooj et al., (2022) also proposed a
transfer learning technique based on a pre-trained
AlexNet model. Wang et al., (2022) proposed a hybrid
deep learning model for the automatic detection of
cancer, in which different layers of CNN and GRU
architecture were used. Aljuaid et al., (2022) proposed a
new computer-aided diagnosis method for binary and
multi-class breast cancer using a combination of ResNet
18, ShuffleNet, and Inception-V3Net. Obtaining essential
image features from breast histopathology images is
typically done from the entire image, regardless of
magnification. To overcome the challenge of selecting
generic features, Ukwuoma et al. (2022f) introduced
DEEP_Pachi, a model that is capable of classifying
breast histopathology images at different magnifications.
Nawaz et al., (2018) presented a deep-learning method
for multi-class classification via CNN. The proposed
method classifies tumors as benign or malignant, but the
prediction is done in subclasses. Mi et al, (2021)
proposed a two-stage architecture via a patch-level CNN
and XGBoost as a WSl-level classifier. This method
classifies H&E-stained digital pathology images of the
breast into four categories. Maleika et al., (2021),
combined a pre-trained model based on ResNet50 with
an enhanced CNN to segment and classify various types
of breast abnormalities. Handcrafted feature extraction
methods were used by Joseph et al. (2022) and this was
then used to train the deep neural Network. Their
proposed techniques achieved an accuracy score of
96.84% (400x). Zabitet al., (2022) used the pre-trained
Xception model's six intermediate layers to obtain salient
characteristics from input images. They optimized the
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model on an unnormalized dataset before being tested
on a normalized dataset.

METHODOLOGY

This section explores the proposed model in detail.
Figure 1 shows the flowchart of the work done in this
paper starting from the data acquisition to the evaluation
of the train models. The first step is data splitting,
followed by data augmentation of the train set. The work
done is in sequential order s seen in (Figure 1). We
examined 7 deep learning pre-trained model
performances on the preprocessed data (DenseNet121,
ResNet110, GoogleNet, Xception, EfficientNNetB3,
ResNet110, InceptionResNetV2), followed by the
selection of the networks for the proposed hybrid
ensemble network. In this research, the DenseNet201,
ResNet110 and the Xception model were used for the
ensembling task.

Proposed hybrid ensemble model

First, the pre-trained architectures of choice were created
to represent the spectral-spatial data of histopathology
images of breast cancer. Second, discriminative and
representative characteristics are modeled using an
attention-based second-order pooling (ASP) operator.
Since the selected pre-trained models used a first-order
feature operator, we believed that their operators produce
shallow future maps. Each model was expanded with an
ASP operator before the concatenation layer to provide
deeper features. The ASP is intended to derive from each
model's first-order pooling (MaxPooling) by using the
characteristics of the preceding convolutional layers as
shown in (Figure 2). The modified models were
DenseNet201, ResNet110 and Xception models as seen
in (Figure 2). To reduce the scale dependency of the
features from the prior layers of each selected Model, we

included a 12 normalization (Ukwuoma et al., 2022d).
Second-order pooling is computed by using the real

ks ke
symmetric matrix FSP‘ ER :

transposs
=F P E

F.. =

Eqg. 1 calculates the internal product of each column-raw

scalar pair in Fre. The relationship between the variables
of the adjacent pixels is used to learn the attention mask
thus;

_ transpose
AM = FppFp

(2)
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Figure 1: The Flowchart/Summary of the Proposed Architecture Starts from the Database/Data
Acquisition to The Trained Model Evaluation and Comparison with The State-Of-The-Art Results.
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Figure 2: The Proposed Hybrid Ensemble Model. The Densenet201, Xception and ResNet110 Models were modified before
concatenation of their output features after which a fully connected layer with SoftMax Classifier is employed for the Final Prediction.
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Figure 3: A Depicts the Dense Block of The Implemented Densenet201. B Depicts the Attention
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Representation of the ASP.

Where AM € R M is the interchangeability of pixels
that are next to one another in pairs. The trigonometric
distance metric so determines how similar the
surrounding pixels are to the core pixel;

MA [ﬂMAEFEﬂ!PDEB

= A [”" MATDHMPMB”

feli
)

Where 1 €{L2,...,M} MA
ﬁE EJ"’IXJ:"I

isignifies any adjacent

pixel’s vector, denotes the diagonal matrix

used to create” learning while I""I‘ﬂ"i!-designates the
neighborhood’s center pixel vector. According to Eq. 4,
the attention scores are standardized to a uniform value
using the SoftMax function.

_ Ep[+h|:
¢ = A

i

; (4)

b genotes the bias, Zw; =Ll €{1,2,....M} 5nq4

W e BM*M

cross-weight matrix can be gotten from eq.

4. The final implemented attention-based second-order
pooling is seen in Eq. 5

_ piranSposSes g3
Fase = Frp W2Fp.

()

In order to depict the second-order pooling, the ASP
takes the characteristics from the last convolutional layer
of the pre-trained models and adds a variety of nearby
pixels using an information and learning weighting
method. This suggests that while the impact of the pixels
with lesser weights is muted, the pixels with bigger
weights have a significant impact.

The binary operations "®” and «® stand for elementwise
multiplication and matrix multiplication, respectively. The
letters "T" and "C" which stand for transpose and picking
out the indicated pixel respectively are examples of unary
operations while features/parameters are represented by
the yellow boxes. The resulting features are then
vectorized using a Frobenius normalizing layer and a
feature extraction layer. After that, classification is
performed using the final FC layer with SoftMax loss. It
should be noted that because each component of the
proposed hybrid ensemble model is differentiable, the
entire network is an end-to-end deep learning model as
shown in (Figure 3).

Official Publication of Direct Research Journal of Public Health and Environmental Technology: Vol. 8, 2023, ISSN 2734-2182



Ukwuoma et al. 27

Implementation details

In order to conduct this experiment, a desktop pc with a
64-bit OS, an Intel(R) Core (TM) i5-8300H CPU clocked
at 2.30GHz, 15.9 GB of useable RAM and an NVIDIA
GEFORCE GTX-1050Ti, 4.0GB GPU were used. This
work uses the open-source frameworks Keras and
TensorFlow for implementation. The model
hyperparameters include Adam optimizer, images size
of 224 x 224, batch size = 4, epoch = 300. The data
transformation function includes; horizontal flip = True,
rescale = 1./255, rotation range=40, width shift
range=0.2, height shift range=0.2, and shear range=0.2.
The experiment's loss function is the categorical cross-
entropy.

Materials

This section explains the dataset, data preprocessing and
the evaluation metrics used. The BreakHis (Man et al.,
2020) dataset with Binary class (Benign vs Malignant),
Multiclass-4 classes which have two sets; set 1
comprises Adenosis, Fibroadenoma, Phyllodes_tumor
and Tubular_adenoma while set 2 comprises
Ductal_carcinoma, Lobular_carcinoma,
Mucinous_carcinoma, and Papillary_carcinoma and
multiclass-8 classes  which includes; Adenosis,
Ductal_carcinoma, Fibroadenoma, Lobular_carcinoma,
Mucinous_carcinoma, Phyllodes_tumor,
Papillary_carcinoma and Tubular_adenoma is used for
our experiment.

BreakHis (Man et al., 2020) Dataset

The Pathological Anatomy and Cytopathology (P&D) Lab
in Brazil provided the database. Eighty-two individuals
were diagnosed, producing malignant and benign
microscopic images at various magnifications. Table 1
shows the breakdown of the dataset which is visualized
in (Figure 4).

Dataset preprocessing

The employed dataset was first split in the ratio of
70:20:10 for the training, validation and test set. Only the
train set was subjected to data augmentation using the
python augmentor library to 1002 samples. The train sets
were upsampled with the following transformations:
cropping, random rotation, random flipping, skew, shear,
zoom, etc.

Evaluation metrics

These are the metrics we employed;

TP +TN
(TP + TN) + (FP +FN)

Accuracy = =100 (6)

Precision = ——— = 100 @
TP+ FP
. _ TN _ ™
Specificity = > - 100 ———— 100 (g
Sensitivity = — 100 = ——— 100 (9)
B TP+FN

- _ (u)* —_2TE
) score = 2 = zstprrprFn O
" ( TE;+TN; )
AUC = P10\ 7B # TN, +FF; +FN;
k (1)
RESULTS

This section presents the results of all the experiments
performed in this paper. Since our work is based on
ensemble models, this section presents various
experiments starting from the pre-trained model's
experiment, to the modification of the selected models to
the developed ensembled models. The developed
ensemble model results are based on three scenarios;
binary classification, four-class  multi-classification
(Benign classes and malignant classes) and lastly Eight
class multiclass classification.

fine-tuned backbone

Backbone selection and

experiment

The backbone model selection experiments were done
on different magnifications for both benign and malignant
classes. Table 2 shows that the DenseNet architecture
recorded superior performance among the other models
in both benign and malignant classes, followed by the
Xception Model, and the ResNet architectures. However,
the ResNet architecture had equal metrics in some
magnifications compared to the VGG16 and
InceptionResNetV2 architecture. From (Table 2), we
concluded that the DenseNet, ResNet and Xception
architecture's performance led to their selection as the
proposed hybrid ensemble model backbone.

Table 3 summarizes the results of the modification
experiments using the multiclass (four-classes) set. The
results show that the selected models recorded a 0.01 -
0.05 performance improvement in all magnifications and
evaluation metrics. The DenseNet architecture, its best
performance is at 40x magnification with 0.925 accuracy,
0.844 sensitivity, 0.946 specificity, 0.855 precision,
0.846F1_score and 0.895 AUC for the benign while the
modified DenseNet architecture best performance is seen
at the 100x magnification with an accuracy of 0.960,
Sensitivity of 0.920, specificity of 0.973, precision of
0.920, F1_score of 0.922and AUC of 0.951 for the benign
class. For the Malignant class, the conventional
DenseNet model's best performance was seen at 400x
magnification with 0.913 (accuracy), 0.825(sensitivity),
0.941 (specificity), 0.825 (precision), 0.825 ( F1_score)
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Table 1: Breakdown of the BreaKHis dataset which includes the original partition, the splitting and the number of

samples per spilit.

Magnification

Class Sub_Class 20x 100X 200x 200x Total Nos_Patients
Adenosis 114 113 111 106 444
. Fibroadenoma 253 260 264 237 1014
Benign Phyllodes_tumor 109 121 108 115 453 24
Tubular_adenoma 149 150 140 130 569
Ductal_carcinoma 864 903 896 788 3451
Malignant Lobglar_carcingma 156 170 163 137 626 58
Mucinous_carcinoma 205 222 196 169 792
Papillary_carcinoma 145 142 135 138 560
Total 1995 2081 2013 1820 7090 82
Augmented-Train
Adenosis 1002 1002 1002 1002 4008
Benign Fibroadenoma 1002 1002 1002 1002 4008
Phyllodes_tumor 1002 1002 1002 1002 4008
Tubular_adenoma 1002 1002 1002 1002 4008
Ductal_carcinoma 1002 1002 1002 1002 4008
Malignant Lobglar_carcingma 1002 1002 1002 1002 4008
Mucinous_carcinoma 1002 1002 1002 1002 4008
Papillary carcinoma 1002 1002 1002 1002 4008
Test
Adenosis 11 11 11 10 43
Benign Fibroadenoma 25 25 26 23 99 )
Phyllodes_tumor 10 12 10 11 43
Tubular_adenoma 14 14 13 12 53
Ductal_carcinoma 86 90 89 78 343
Malignant Lobular_carcinoma 15 16 16 13 60 )
Mucinous_carcinoma 20 22 19 16 77
Papillary_carcinoma 14 14 13 13 54
Validation
Adenosis 98 98 98 98 392
Benign Fibroadenoma 98 98 98 98 392
Phyllodes_tumor 98 98 98 98 392
Tubular_adenoma 98 98 98 98 392
Ductal_carcinoma 98 98 98 98 392
. Lobular_carcinoma 98 98 98 98 392
Malignant Mucinous_carcinoma 98 98 98 98 392 )
Papillary carcinoma 98 98 98 98 392

and 0.854(AUC) while for the modified DenseNet, the
best malignant performance is seen at the 40x
magnifications with an accuracy of 0.952, sensitivity of
0.904, specificity of 0.968, precision of 0.904, F1_score
of 0.904, and AUC of 0.909. For the ResNet architecture,
both the conventional and modified recorded their best
performance at the 100x magnification  with
0.911(Accuracy), 0.863(sensitivity), 0.943(specificity),
0.823(precision), 0.828(F1_score), 0.903(AUC) against
0.95(Accuracy), 0.910(sensitivity),  0.968(specificity),

0.910(precision), 0.909(F1_score), 0.938(AUC) for the
benign class while that of the malignant is seen at 40x
magnification with 0.892(Accuracy), 0.785(sensitivity),
0.928(specificity), 0.785(precision), 0.785(F1_score),
0.806(AUC) against 0.922(Accuracy), 0.844(sensitivity),
0.948(specificity), 0.844(precision), 0.844(F1_score),
0.882(AUC). For the Xception model (Table 3), the
conventional best performance for the benign class is
seen at 400x magnification whereas the modified
Xception is at 40x magnification with an accuracy of
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Figure 4: Sample Visualization of the BreaKHis (Man et al., 2020) Data. The Red Dash-Lines Indicate
the Multiclass (8 Classes) Classification Labeled With 3, While the Blue-Dash Lines Indicate the Multi-
Class (4 Class) Classification Labeled With 2 and the Binary Classification Is the Images with The

Green Dash-Lines Labeled 1.

0.925, sensitivity of 0.850, specificity of 0.950, precision
of 0.875, F1_score of 0.850, and AUC of 0.887 against
0.893(Accuracy), 0.800(sensitivity), 0.929(specificity),
0.786(precision), 0.788(F1_score), 0.863(AUC) for the
conventional Xception. For the Malignant class, both the
conventional and modified recorded their best
performance at the 100x magnification  with
0.900(Accuracy), 0.800(sensitivity), 0.933(specificity),
0.800(precision), 0.800(F1_score), 0.858(AUC) against
0.922(Accuracy), 0.844(sensitivity), 0.948(specificity),
0.844(precision), 0.844(F1_score), 0.868(AUC). The
individual class performance for both the benign and
malignant is also evaluated as shown in (Table 3).

Attention-based end-to-end hybrid ensemble model
experiment

This section presents the result of the proposed model as
recorded in (Table 4). For the binary classification, the
40x magnification yielded the highest classification result
with an accuracy of 0.979, sensitivity (0.981), specificity
(0.981), precision (0.979), F1_score (0.976) and AUC
(0.981) whereas the 200x magnification yielded the
lowest classification result with an accuracy of 0.939,
sensitivity (0.942), specificity (0.942), precision (0.939),

F1_score (0.939) and AUC (0.941). The highest area
(ROC) and AP is seen in the 40x magnification, followed
by the 100x, 400x and lastly the 200x magnification. The
model performs very well in the malignant class
compared to the benign class.

For four-class multi-classification on the Benign class,
the highest model performance is seen at the 100x
magnification with an accuracy of 0.968, sensitivity
(0.952), specificity (0.978), precision (0.936), F1_score
(0.942) and AUC (0.965) followed by 200x, 40x and lastly
the 400x magnification. The malignant model's best
performance is seen at 200x magnification with an
accuracy of 0.956, sensitivity (0.912), specificity (0.970),
precision (0.912), F1_score (0.912) and AUC (0.907)
followed by 40x, 400x and lastly the 100x magnification.
Likewise, the ROC and Precision-recall are used to
evaluate the model's class performance. The Benign
class had an area (ROC) above 90% in all magnifications
with an area of 97% as the highest which is seen in 100x
magnification. Although the AP results are poor
compared to the ROC area, the Phyllodes_tumor,
Adenosis and Tubular_adenoma all had an AP of 1.0 for
40x, 100x and 200x magnification. Looking at the
malignant Roc (area) and AP performance of each class,
the benign experiment result is superior. The Ap result is
indeed poor as some classes had an Ap below 0.5.
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Table 2: Classification performance of the various models under different magnifications for the ensemble backbone model selection. AC= Accuracy, SE=Sensitivity, SP=
Specificity, PR=Precision, F1_S=F1_score.

40x Magnification 100x Magnification 200x Magnification 400x Magnification
AC SE SP PR F1_S AUC AC SE SP PR F1_S AUC AC SE SP PR F1_S AUC AC SE SP PR F1_S AUC
Benign Benign Benign Benign
g 0.925 0.844 0.946  0.855 0.846 0.895 0.919 0.839 0.946 0.857 0.839 0.885 0.883 0.795 0.922 0.794 0.777 0.858 0.902 0.804 0.935 0.815 0.803 0.863
Z Malignant Malignant Malignant Malignant
fat 0.904 0.807 0.936  0.807 0.807 0.819 0.863 0.725 0.908 0.725 0.725 0.784 0.887 0.774 0.925 0.774 0.699 0.804 0.913 0.825 0.941 0.825 0.825 0.854
2 Benign Benign Benign Benign
5 0.883 0.767 0.922  0.770 0.767 0.835 0.863 0.729 0.909 0.737 0.728 0.814 0.875 0.764 0.916 0.757 0.755 0.838 0.839 0.679 0.892 0.679 0.679 0.763
'% = Malignant Malignant Malignant Malignant
E Z 0.870 0.741 0914  0.741 0.741 0.801 0.768 0.570 0.845 0.535 0.535 0.700 0.847 0.701 0.898 0.693 0.693 0.787 0.858 0.717 0.906 0.716 0.716 0.789
; Benign Benign Benign Benign
§ 0.858 0.735 0.906  0.716 0.721 0.818 0.863 0.748 0.909 0.730 0.737 0.826 0.842 0.722 0.894 0.683 0.687 0.808 0.866 0.732 0.911 0.732 0.732 0.817
g- Malignant Malignant Malignant Malignant
E 0.815 0.640 0.877 0.630 0.630 0.755 0.760 0.624 0.848 0.521 0.521 0.736 0.799 0.598 0.866 0.599 0.598 0.700 0.808 0.61 0.872 0.616 0.617 0.665
Benign Benign Benign Benign
= 0.883 0.766 0.922 0.767 0.767 0.834 0.911 0.863 0.943 0.823 0.828 0.903 0.883 0.798 0.922 0.783 0.777 0.860 0.875 0.75 0.917 0.751 0.75 0.817
Z: Malignant Malignant Malignant Malignant
;_-“é 0.892 0.785 0.928 0.785 0.785 0.806 0.838 0.676 0.892 0.676 0.676 0.785 0.858 0.723 0.905 0.715 0.715 0.806 0.85 0.900 0.900 0.700 0.700 0.715
Benign Benign Benign Benign
© 0.883 0.766 0.922 0.810 0.767 0.837 0.839 0.713 0.888 0.742 0.687 0.800 0.808 0.659 0.869 0.617 0.627 0.764 0.902 0.804 0.935 0.821 0.800 0.864
O Malignant Malignant Malignant Malignant
‘>3 0.826 0.652 0.884  0.652 0.652 0.742 0.824 0.665 0.882 0.648 0.648 0.767 0.821 0.642 0.880 0.642 0.642 0.642 0.821 0.642 0.881 0.641 0.642 0.684
Benign Benign Benign Benign
g 0.892 0.783 0.928 0.813 0.796 0.850 0.887 0.786 0.925 0.774 0.774 0.855 0.891 0.806 0.928 0.787 0.783 0.866 0.893 0.800 0.929 0.786 0.788 0.863
"§. Malignant Malignant Malignant Malignant
™ 0.900 0.800 0.933 0.800 0.800 0.858 0.856 0.742 0.904 0.711 0.711 0.822 0.858 0.715 0.905 0.715 0.715 0.789 0.871 0.742 0.914 0.742 0.742 0.820

Table 3. Performance of the Finetuned Models (Densenet, Resnet and Xception). AC= Accuracy, SE=Sensitivity, SP= Specificity, PR=Precision, F1_S=F1_score, Ad=Adenosis,

Fi=Fibroadenoma, Phy=Phyllodes_Tumor,Tu=Tubular_Adenoma, Dc=Ductal_Carcinoma,Lc=Lobular_Carcinoma, Mc=Mucinous_CarcinomaandPc=Papillary_Carcinoma

40x Magnification 100x Magnification 200x Magnification 400x Magnification
AC SE SP PR F1_S AUC AC SE SP PR F1_S AUC AC SE SP PR F1_S AUC AC SE SP PR F1_S AUC
Benign Benign Benign Benign
- 0.925 0.850 0.941 0.886 0.850 0.882 0.960  0.920 0.973 0.920 0.922 0.951 0.933 0.867 0.960 0.873 0.870 0.910 0.938 0.875 0.955 0.887 0.875 0.910
é Malignant Malignant Malignant Malignant
§ 0.952 0.904 0.968 0.904 0.904 0.909 0.898  0.796 0.932 0.796 0.796 0.810 0.945 0.891 0.964 0.901 0.890 0.880 0.938 0.875 0.958 0.875 0.875 0.864
Benign Benign Benign Benign
= 0.925 0.850 0.950 0.910 0.859 0.886 0.95 0.910 0.968 0.910 0.909 0.938 0.933 0.894 0.956 0.867 0.872 0.925 0.920 0.839 0.946 0.847 0.840 0.884
% Malignant Malignant Malignant Malignant
2 0.922 0.844 0.948 0.844 0.844 0.882 0.863  0.725 0.908 0.725 0.725 0.766 0.916 0.832 0.944 0.832 0.832 0.866 0.917 0.833 0.944 0.833 0.833 0.830
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Table 3
Benign Benign Benign Benign
g 0.925 0.850 0.950 0.875 0.850 0.887 0911  0.835 0.941 0.827 0.825 0.886 0.867 0.768 0.911 0.733 0.742 0.837 0.911 0.821 0.940 0.837 0.821 0.865
§ Malignant Malignant Malignant Malignant
™M 0.922 0.844 0.948 0.844 0.844 0.868 0.873 0.746 0.915 0.746 0.746 0.753 0.920 0.839 0.946 0.839 0.839 0.867 0.892 0.794 0.928 0.783 0.783 0.850
Benign — Class Performance
Metrics Ad Fi Phy Tu Ad Fi Phy Tu Ad Fi Phy Tu Ad Fi Phy Tu
Accuracy 0.967 0.883 0.950 0.900 0.984 0.935 0.968 0.952 0.967 0.883 0.883 1.00 0.946 0.929 0.911 0.964
Precision 0.909 0.800 1.00 0.833 1.00 0.957 0.857 0.867 1.0 0.88 0.615 1.00 1.0 0.88 0.75 0.917
Sensitivity 0.909 0.960 0.700 0.714 0.909 0.880 1.00 0.929 0.818 0.846 0.800 1.00 0.700 0.957 0.818 0.917
Malignant - Class Performance
Metrics Dc Lc Mc Pc Dc Lc Mc Pc Dc Lc Mc Pc Dc Lc Mc Pc
Accuracy 0.919 0.985 0.956 0.948 0.838 0.887 0.908 0.958 0.891 0.942 0.956 0.993 0.892 0.942 0.950 0.966
3
:qzw) Precision 0.931 0.882 0.850 0.818 0.860 0.50 0.696 0.833 0.885 0.786 0.933 1.00 0.892 0.750 0.917 0.846
=
A Sensitivity 0.942 1.00 0.850 0.643 0.889 0.438 0.727 0.714 0.955 0.688 0.737 0.923 0.949 0.692 0.688 0.846
Table 3
Benign — Class Performance
Metrics Ad Fi Phy Tu Ad Fi Phy Tu Ad Fi Phy Tu Ad Fi Phy Tu
Accuracy 0.983 0.850 0.983 0.883 1.00 0.919 0.951 0.935 0.983 0.883 0.933 0.933 0.946 0.893 0.893 0.946
Precision 1.00 0.750 1.00 0.889 1.00 0.917 0.909 0.812 1.00 0.952 0.75 0.765 0.769 0.840 0.778 1.00
% Sensitivity 0.909 0.960 0.900 0.571 1.0 0.880 0.833 0.929 0.909 0.769 0.900 1.00 1.00 0.913 0.636 0.750
{_;'2 Malignant - Class Performance
Metrics Dc Lc Mc Pc Dc Lc Mc Pc Dc Lc Mc Pc Dc Lc Mc Pc
Accuracy 0.881 0.933 0.941 0.933 0.754 0.859 0.915 0.923 0.847 0.920 0.956 0.942 0.850 0.933 0.950 0.933
Precision 0.938 0.650 0.833 0.647 0.816 0.389 0.750 0.588 0.905 0.667 0.810 0.647 0.866 0.727 0.917 0.667
Sensitivity 0.872 0.867 0.750 0.786 0.789 0.438 0.682 0.714 0.854 0.625 0.895 0.846 0.910 0.615 0.688 0.769
Benign — Class Performance
Metrics Ad Fi Phy Tu Ad Fi Phy Tu Ad Fi Phy Tu Ad Fi Phy Tu
Accuracy 0.933 0.866 0.950 0.950 0.951 0.855 0.919 0.919 0.933 0.750 0.883 0.900 0.929 0.857 0.893 0.964
Precision 0.888 0.793 0.818 1.00 0.833 0.833 0.733 0.909 0.769 0.762 0.636 0.733 0.875 0.778 0.778 0.917
=
é Sensitivity 0.727 0.920 0.900 0.786 0.909 0.800 0.917 0.714 0.909 0.615 0.700 0.846 0.700 0.913 0.636 0.917
;ﬁ Malignant - Class Performance
Metrics Dc Lc Mc Pc Dc Lc Mc Pc Dc Lc Mc Pc Dc Lc Mc Pc
Accuracy 0.859 0.926 0.948 0.956 0.775 0.866 0.923 0.930 0.847 0.927 0.920 0.985 0.783 0.933 0.883 0.967
Precision 0.904 0.647 0.783 0.833 0.802 0.412 0.867 0.643 0.886 0.650 0.750 0.923 0.871 0.631 0.556 0.846
Sensitivity 0.872 0.733 0.900 0.714 0.856 0.438 0.591 0.643 0.876 0.813 0.632 0.923 0.782 0.923 0.625 0.846
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Table 4: Performance of The Proposed End-End Hybrid Ensemble Model. Ac = Accuracy, Se=Sensitivity, SP= Specificity, PR=Precision, F1_S=F1_score, Ad=Adenosis,,
Fi=Fibroadenoma, Phy=Phyllodes_Tumor,Tu=Tubular_Adenoma, Dc=Ductal_Carcinoma,Lc=Lobular_Carcinoma, Mc=Mucinous_CarcinomaandPc=Papillary_Carcinoma

40x Magnification 100x Magnification 200x Magnification 400x Magnification
AC SE SP PR F1_S AUC AC SE SP PR F1_S AUC AC SE SP PR F1_S AUC AC SE SP PR F1_S AUC
Two Classes
0.979 0.981 0.981 0.979 0.976 0.981 | 0.957 0.957 0.957 0.957 0.957 0.947 | 0.939 0.942 0.942 0.939 0.939 0.942 | 0.950 0.950 0.950 0.950 0.950 0.950
Eight Classes
0.976 0.903 0.986  0.903 0.903 0.938 | 0.955 0.819 0.974 0.819 0.819 0.878 0.966 0.863 0.980 0.863 0.863 0.907 0.959 0.835 0.976 0.850 0.835 0.886
Benign Benign Benign Benign
5 é 0.933 0.867 0.956  0.889 0.874 0.906 | 0.968 0.952 0.978 0.936 0.942 0.965 0.942 0.891 0.961 0.883 0.883 0.926 0.929 0.857 0.952 0.915 0.858 0.886
i g Malignant Malignant Malignant Malignant
0.937 0.874 0.958 0.874 0.797 0.880 ]0.887 0.775 0.925 0.775 0.775 0.828 0.956 0.912 0.970 0.912 0.912 0.907 0.921 0.842 0.947 0.842 0.842 0.850
Receiver Operating Characteristics (ROC)
§ Mi-A Ma-A Benign Malignant Mi-A Ma-A Benign Malignant Mi-A Ma-A Benign Malignant Mi-A Ma-A Benign Malignant
E 0.98 0.98 0.98 0.98 0.96 0.95 0.95 0.95 0.94 0.94 0.94 0.94 0.95 0.95 0.95 0.95
(-o) Precision-Recall Curve (AP)
E Mi-A Benign Malignant Mi-A Benign Malignant Mi-A Benign Malignant Mi-A Benign Malignant
0.97 0.94 0.99 0.94 0.89 0.96 0.91 0.84 0.96 0.93 0.87 0.96
Table 4.
Benign - Receiver Operating Characteristics (ROC)
Mi-A Ma-A Ad Fi Phy Tu Mi-A Ma-A Ad Fi Phy Tu Mi-A Ma-A Ad Fi Phy Tu Mi-A  Ma-A Ad Fi Phy Tu
0.91 0.91 0.90 0.89 1.00 0.84 0.96 0.97 1.00 0.93 0.98 0.95 0.92 0.93 0.90 0.89 0.91 1.00 0.90 0.89 0.94 0.87 0.82 0.92
Benign - Precision-Recall Curve (AP)
§ Mi-A Ad Fi Phy Tu Mi-A Ad Fi Phy Tu Mi-A Ad Fi Phy Tu Mi-A Ad Fi Phy Tu
K 0.78 0.77 0.79 1.00 0.66 0.89 1.00 0.89 0.86 0.88 0.81 0.77 0.84 0.64 1.00 0.77 0.83 0.74 0.71 0.87
Lg Malignant - Receiver Operating Characteristics (ROC)
L Mi-A  Ma-A Dc Lc Mc Pc Mi-A Ma-A Dc Lc Mc Pc Mi-A  Ma-A Dc Lc Mc Pc Mi-A  Ma-A Dc Lc Mc Pc
0.92 0.86 0.90 0.92 0.88 0.74 0.85 0.83 0.80 0.78 0.91 0.83 0.94 0.90 0.91 0.80 0.95 0.95 0.89 0.85 0.83 0.88 0.82 0.88
Malignant - Precision-Recall Curve (AP)
Mi-A Dc Lc Mc Pc Mi-A Dc Lc Mc Pc Mi-A Dc Lc Mc Pc Mi-A Dc Lc Mc Pc
0.80 0.90 0.77 0.64 0.44 0.66 0.83 0.37 0.70 0.42 0.85 0.92 0.56 0.91 0.75 0.75 0.85 0.67 0.51 0.67
Table 4
ROC Mi-A Ma-A Ad Dc Fi Lc Mc Pc Phy Ta ROC Mi-A Ma-A Ad Dc Fi Lc Mc Pc Phy Ta
Maglfi(f);::alion 0.94 0.93 0.95 0.94 0.99 0.96 0.92 0.81 1.00 0.88 MagIll?f?:atiOH 0.90 0.88 0.95 0.88 0.89 0.83 0.85 0.78 0.95 0.88
§ ZQOX . 0.92 0.90 0.91 0.94 0.86 0.77 0.81 0.99 0.94 0.99 4QQX . 0.91 0.89 0.95 0.88 0.93 0.76 0.87 0.88 0.91 0.92
E Magnification Magnification
(EJ PR/AP Mi-A Ad Dc Fi Lc Mc Pc Phy Ta PR/AP Mi-A Ad Dc Fi Lc Mc Pc Phy Ta
)
. Magr?i(t)':ation 0.83 0.91 0.91 0.93 0.77 0.74 0.51 1.00 0.63 Magxll?f(i):ation 0.69 0.91 0.81 0.75 0.47 0.61 0.44 0.73 0.55
Magi?t?:ation 0.76 0.75 0.88 0.70 0.46 0.62 0.81 0.58 0.87 Mag?l?f(i):ation 0.72 0.82 0.80 0.67 0.38 0.67 0.66 0.83 0.84
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Table 5: Class Performance of The Proposed End-To-End Hybrid Ensemble Model Using Accuracy, Sensitivity, Specificity, Precision, F1_scorein All Magnifications.

Ad=Adenosis,

Fi=Fibroadenoma,

Pc=Papillary_Carcinoma.

Phy=Phyllodes_Tumor,Ta=Tubular_Adenoma,

Dc=Ductal_Carcinoma,Lc=Lobular_Carcinoma,

Mc=Mucinous_Carcinomaand

Metrics 40x Magnification 100x Magnification 200x Magnification 400x Magnification
Benign Malignant Benign Malignant Benign Malignant Benign Malignant
8 Accuracy 0.979 0.979 0.957 0.957 0.939 0.939 0.950 0.950
E AUC 0.981 0.981 0.947 0.947 0.942 0.942 0.950 0.950
LO) F1_score 0.967 0.985 0.929 0.969 0.905 0.955 0.924 0.963
g Precision 0.952 0.992 0.937 0.965 0.864 0.977 0.902 0.975
Specificity 0.978 0.983 0.972 0.922 0.934 0.95 0.951 0.948
Sensitivity 0.983 0.978 0.922 0.972 0.95 0.934 0.948 0.951
Benign — Class Performance
Metrics Ad Fi Phy Tu Ad Fi Phy Tu Ad Fi Phy Tu Ad Fi Phy Tu
Accuracy 0.950  0.883 1.00 0.900 1.00 0.935 0.968 0.968 0.950 0.900 0917 1.00 0.964 0.857 0.929 0.964
AUC 0.899  0.889 1.00  0.835 1.00 0.926 0.980 0.954 0.899 0.894 0.910 1.00 0.939 0.872 0.818 0.917
F1_score 0.857  0.867 1.00  0.769 1.00 0.917 0.923 0.929 0.857 0.880 0.782 1.00 0.900 0.846 0.778 0.909
" Precision 0.900  0.821 1.00  0.833 1.00 0.957 0.857 0.929 0.900 0.917 0.692 1.00 0.900 0.757 1.00 1.00
2 Specificity 0.980  0.857 1.00  0.957 1.00 0.973 0.960 0.979 0.980 0.941 0.920 1.00 0.978 0.788 1.00 1.00
5 Sensitivity 0.818  0.920 1.00  0.714 1.00 0.880 1.00 0.929 0.818 0.846 0.900 1.00 0.900 0.957 0.636 0.833
5 Malignant - Class Performance
£ Metrics Dc Lc Mc Pc Dc Lc Mc Pc Dc Lc Mc Pc Dc Lc Mc Pc
Accuracy 0911 0970 0933 0.933 0.796 0.894 0.944 0915 0.927 0.942 0.985 0.971 0.850 0.958 0917 0.958
AUC 0.895 0925 0.878 0.742 0.798 0.777 0911 0.826 0.910 0.804 0.947 0.949 0.830 0.875 0.820 0.875
F1_score 0932 0.867 0.780  0.609 0.830 0.571 0.826 0.625 0.945 0.714 0.944 0.857 0.886 0.800 0.688 0.800
Precision 0911 0.867 0.762  0.778 0.877 0.526 0.792 0.555 0.925 0.833 1.00 0.800 0.875 0.833 0.688 0.833
Specificity 0.837 0983 0957 0.983 0.808 0.929 0.958 0.938 0.854 0.983 1.00 0.976 0.762 0.981 0.952 0.981
Sensitivity 0953 0.866 0.800 0.500 0.789 0.625 0.864 0.714 0.966 0.625 0.895 0.923 0.897 0.769 0.688 0.769
Table 5
Mag“;f‘ca“" Metrics Ad De Fi Le Mec Pe Phy Ta Magnflca“" Ad De Fi Le Mec Pc Phy Ta
Accuracy 0.995 0.944 0.990 0.979 0.969 0.959 1.00 0.969 0.995 0.882 0.966 0.946 0.951 0.956 0.980 0.961
AUC 0.955 0.942 0.994 0.958 0.916 0.813 1.00 0.885 0.955 0.883 0.894 0.828 0.853 0.778 0.951 0.880
4 40% F1_score 0.952 0.936 0.962 0.875 0.85 0.692 1.00 0.786 100 0.952 0.870 0.851 0.666 0.762 0.64 0.846 0.733
A Precision 1.00 0.941 0.926 0.824 0.85 0.75 1.00 0.786 1.00 0.851 0.909 0.647 0.8 0.727 0.786 0.688
5 Specificity 1.00 0.954 0.988 0.983 0.983 0.983 1.00 0.983 1.00 0.877 0.989 0.968 0.978 0.984 0.984 0.974
- Sensitivity 0.909 0.930 1.00 0.933 0.850 0.643 1.00 0.786 0.909 0.889 0.800 0.688 0.727 0.571 0917 0.786
= Accuracy 0.985 0.934 0.954 0.949 0.959 0.985 0.970 0.990 0.989 0.881 0.943 0.943 0.966 0.972 0.989 0.989
5| AUC 0.906 0.937 0.860 0.773 0.813 0.992 0.937 0.995 0.947 0.881 0.930 0.757 0.869 0.878 0.909 0.916
200x F1_score 0.857 0.930 0.809 0.643 0.750 0.897 0.750 0.929 400x 0.900 0.868 0.808 0.583 0.800 0.800 0.900 0.909
Precision 0.900 0.896 0.905 0.750 0.923 0.813 0.643 0.867 0.900 0.852 0.724 0.636 0.857 0.833 1.00 1.00
Specificity 0.995 0.907 0.988 0.983 0.994 0.983 0.973 0.989 0.994 0.878 0.9478 0.975 0.988 0.988 1.00 1.00
Sensitivity 0.818 0.966 0.731 0.563 0.632 1.00 0.900 1.00 0.900 0.885 0.913 0.538 0.750 0.769 0.818 0.833
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For Eight-class multi-classification, the lowest
result was seen at the 100x magnification with an
accuracy of 0.955, sensitivity (0.819), specificity
(0.974), precision (0.819), F1_score (0.819) and
AUC (0.878) whereas the highest performance is
seen at the 40x magnification with an accuracy of
0.976, sensitivity (0.903), specificity (0.986),
precision (0.903), F1_score (0.903) and AUC
(0.938). The AUC and AP are used to evaluate
the 8-classes multi-classification of the proposed
model. The 40x magnification result is the best for
both area (AUC) and AP. Since the BreakHis
dataset used has a huge class imbalance, we
carried out a class evaluation of each
classification scenario as seen in (Table 5). For
the Binary techniques, the results of the malignant
supersede that of the benign in all magnifications
thus showing that the proposed model can detect
images from classes with less data augmentation.
The four-class benign  multi-classification
illustrates that our model performance on the
Adenosis and Phyllodes_tumor have superior
results in all magnifications whereas, the
Mucinous_carcinoma and Papillary_carcinoma
class recorded the best for malignant. The eight
classes experiment shows that the proposed
model is adequate for a multi-classification task
with a huge data sample. We graphically illustrate
the class performance of all the experiments in
terms of accuracy as shown in (Figure 5a)
denoting Eight classes experiment, 5(b) and 5(c)
denoting four classes experiment and 5(d)
denoting the binary experiment. Figures 6 - 9
summaries the performance of the proposed
model using the confusion metrics evaluation.

DISCUSSION

Since the inception of deep learning techniques, it
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has been much easier to extract discriminative
breast cancer features from high-resolution
images. From our literature survey, we noticed
that binary classification is prominent in research
via breast cancer classification where models are
developed to classify breast liaison as benign or
malignant. Furthermore, researchers who
engaged in multi-class classification mainly
focused on the four class classifications which are
Adenosis, Fibroadenoma, Phyllodes_tumor, and
Tubular_adenoma for the benign set or
Ductal_carcinoma, Lobular_carcinoma,
Mucinous_carcinoma, Papillary_carcinoma for the
malignant set based on the BreakHis data. Rarely
is the eight-class multi-class classification of
breast cancer discussed due to its low
classification accuracy and rectified receptive
field. However, this can besolved by using a
variety of techniques, including ensemble models,
CNN models with various receptive fields,
extraction of features and fusion, attention
mechanisms, and more which is the key objective
of this study.

The proposed model performed very well via the
binary classification with its optimal performance
at 40x magnification with an accuracy of 0.979,
sensitivity (0.981), specificity (0.981), precision
(0.979), F1_score (0.976) and AUC (0.981).
Comparing the class performance, the malignant
was very much detected by the proposed model.
This is linked to the fact that fewer images were
generated for the malignant class as the class had
bigger samples of the original samples compared
to the benign class. This can also be traced to the
multi-classification performance of the model
using the four classes. The model performance is
outstanding for the classes with large original
samples than that of the augmented classes. For
the Benign class, the100x magnification had the

best performance with an accuracy of 0.968,
sensitivity (0.952), specificity (0.978), precision
(0.936), F1_score (0.942) and AUC (0.965)
whereas the 200x magnification yielded the best
for the malignant class with an accuracy of 0.956,
sensitivity (0.912), specificity (0.970), precision
(0.912), F1_score (0.912) and AUC (0.907). In
support of the claims that the model performed
very well on the original images than the
augmented images, taking a look at (Table 1) and
multi-classification (Eight class), we can see that
the individual classes that had fewer augmented
images all had an accuracy, sensitivity, specificity,
precision of 1.0. This led to the future work of this
study; augmenting the images using different
generative models and running an analysis using
our proposed model.

Comparison with state-of-the-art results

The result comparison is based on the networks
that made use of the same BreakHis (Man et al.,
2020) dataset for a fair comparison as shown in
(Table 6). We focused more on recently published
papers since technically their result and approach
are state-of-the-art. For Binary classification,
Authors like Chattopadhyay et al. (2022) proposed
the DRDA-Net7 model (DRDA-Net, which stands
for residual dual-shuffle attention network, is a
dual-shuffle attention-guided deep learning model
that improves the model's capacity to recognize
intricate patterns in images. It was inspired by the
bottleneck unit of the ShuffleNet design), Sharma
and Kumar et al. (Sharma and Kumar, 2022 used
the Xception model and SVM classifier and Liu et
al. (2022) employed Autoencoder and Siamese
Network for binary classification. Although the
recorded results are promising, the result of Liu et
al. (2022) exhibited more reliability among them
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Figure 5: Graphically lllustration of The Class Performance (Accuracy) On The 3-Classification
Scenario (Eight Classes, Four Classes-Benign and Malignant and The Binary Classes) Using the
Proposed Model.
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Figure 6. Eight Classes Experiment Confusion Matrix on All Magnifications. P/A Denotes Predicted
and Actual. A = Adenosis, B = Fibroadenoma, C = Phyllodes_Tumor, D = Tubular_Adenoma, E =
Ductal_Carcinoma, F = Lobular_Carcinoma, G = Mucinous_Carcinoma and H = Papillary_Carcinoma
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Figure 7: Four Classes Experiment (Benign) Confusion Matrix on All Magnifications. P/A Denotes Predicted
and Actual. A = Adenosis, B = Fibroadenoma, C = Phyllodes_Tumor, D = Tubular_Adenoma.

with an accuracy of 97.3% for 40x, 96.1% for 100x,
97.8% for 200x, and 96.7% for 400x magnification
respectively. Saini and Susan (2022) and Sharma et al.,
(2020) employed the VGG16 via multi-classification of
Breast Cancer using the BreakHis Pimkin et al., (2018).

Specifically, Saini and Susan (2022) proposed the
VGGIN-Net in two scenarios; Finetuned and non-
finetuned. The VGG16 pre-trained model's layers up to
the block 4 pool layer were frozen and concatenated to
create the VGGIN-Net, which also included a nonlinear
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Figure 8: Four Classes Experiment (Malignant) Confusion Metrics on All Magnifications. P/A Denotes
Predicted and Actual. A = Ductal_Carcinoma, B = Lobular_Carcinoma, C = Mucinous_Carcinoma, D =
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Figure 9: Binary Experiment Confusion Metrics on All Magnifications.
P/A Denotes Predicted and Actual. A = Benign and B = Malignant.

Table 6: Summary of the state-of-the-art results against the proposed model.

Ref/Year

Approach

Class

Magnification

Merge 40x 100x 200x 400x
Chattopadhyay et al. [32] 2022 DRDA-Net7 model Binary - 96.10 96.03 96.08 96.02
Sharma and Kumar et al. [33] 2022 Xception model and SVM classifier Binary - 96.25 96.25 95.74 94.11
Liu et al. [34] 2022 AE + Siamese Network Binary - 97.3 96.1 97.8 96.7
. VGGIN-Net - 96.21 97.44 96.22 93.49
Saini etal., [35] 2022 Finetuned VGGIN-Net Four - 9756  96.89  97.49  94.21
VGG16 + Linear SVM (Patch Based - 93.97 92.92 91.23 91.79
Sharma et al., [36] 2020 VGG16 + Linear SVM EPatient Basezﬂ) Four - 9325 9187 915 9231

ResNet50 + ESKNN 80.10 - - - -

ResNet50 + ESD 69.40 - - - -

6B-Net + ESKNN 82.03 - - - -

6B-Net + ESD . 70.43 - - . _

Umer et al., [37] 2022 Fused + ESKNN Eight 87.90 ) ) ) )

Fused + ESD 74.30 - - - -

F-Selected + ESKNN 90.10 - - - -

F-Selected + ESD 75.60 - - - -
HF + DNN (100) augmented - 97.24 96.62 95.44 96.29
HF + DNN (400) augmented . - 97.89 97.6 96.10 96.84
Ameh et al., [38] 2022 HF + DNN (400) Eight - 90.87 8957  91.58  88.67
HF + DNN (1000) - 90.01 88.35 92.95 89.54
Sharma et al., [39] 2020 CNN + Pooling Strategy Eight - 80.76 76.58 79.90 74.21
Asare [40] 2020 Self-Training and Self-Paced Learning Eight - 94.57 94.25 95.1 94.47
Boumaraf et al. [41] 2021 Transfer Learning (ResNet) Eight 92.15 94.49 93.27 91.29 89.56
Ours Proposed Eight 97.6 95.5 96.6 95.9

mapping rudimentary Inception block unit (at the higher
level), achieving a classification accuracy of 97.56% for
40x, 96.89% for 100x, 97.49% for 200x, and 94.21% for
400x using the finetuned approach and 96.21% for 40x, based approach. However, their results were poor
97.44% for 100x, 96.22% for 200x, 93.49% for 400x compared to that of Saini and Susan (2022).
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magnification respectively without finetuning. On the
other hand, Sharma et al., (2020) used a linear SVM as a
classifier and VGG16 as a feature extractor via a patch-



An observation is made via the eight classes' multi-
classification. Only a few researchers tend to tackle this
issue due to the low accuracy performance of models.
However, notable authors have come up with improved
models that were able to give higher accuracy. A unique
6BNet featuring six continuous nodes and various
receptive fields is proposed by Umer et al. (2022). Among
all the approaches recorded, the F-selected +ESKNN
approach recorded the highest accuracy of 90.10%.
Ameh et al., (2022) on the other hand, employed four
different approaches which the HF (handcrafted features)
+ DNN (400) augmented approach recorded the highest
accuracy with 97.89% for 40x, 97.6% for 100x, 96.10%
for 200x, and 96.84% for 400x magnifications. Sharma et
al., [39] proposed the use of CNN + Pooling Strategy,
Asare (2020) proposed the use of Self-Training and Self-
Paced Learning whereas Boumaraf et al. (2021)
suggested the use of Transfer learning (ResNet) Which is
based on a block-wise fine-tuning strategy. Asare (2020)
contribution is based on a semi-supervised learning
technique that generates and chooses pseudolabeled
samples for categorizing breast cancer histopathology
images while including self-training and identity learning.
In summary, our proposed model result demonstrated
superiority over all the discussed models in all
experiments (Binary, Multi-classification).

Conclusion

This study proposes an end-to-end hybrid ensemble
model for the multi-classification of BC based on the
attention mechanism and global second-order pooling.
The enhancement of deep learning pre-trained models is
the foundation of the suggested model. Following the
choice of the suggested ensemble model, six pre-trained
models were thoroughly evaluated, and the DenseNet,
ResNet, and Xception architectures were chosen.
BreaKHis dataset is used for the experiment. The
proposed model is utilized for binary classification as well
as multi-classification (four classes and eight classes).
The best accuracy for classifying BC was attained, with
97.9% for binary classification, 96.8% for benign multi-
classification, 95.6% for malignant multi-classification,
and 97.9% for eight-class classifications. According to the
testing findings, the magnifications of 40x, 100x, 200x,
and 40x yield the maximum accuracy. To expand the
functionality of our model and increase the accuracy of
BC diagnosis, we intend to investigate a variety of data
augmentation strategies in the future, such as GAN for
augmenting training samples.
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