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ABSTRACT: The daily rise in female instances of breast cancer (BC) is largely due to misinformation and late-stage detection. Effective treatment 

for BC can only be administered by correctly diagnosing cancer in its very early stages of development. BC classification has been discovered to 

be accelerated and automated using deep learning models and medical image analysis techniques. However, these techniques, which are crucial 

for numerous other applications outside broad visual identification, usually use generic traits. Since the primary objective of deep learning 

models is to characterize complex boundaries of hundreds of classes in deep space, embracing higher-order qualities is essential for improving 

non-linear modeling abilities. This study employs the publicly available BreakHis to provide an end-to-end hybrid ensemble model for BC multi-

classification utilizing an attention-based global second-order pooling network. Ensembling is accomplished by adding an attention-based second-

order pooling network in the form of a convolutional layer to the separate models to increase their non-linear modeling skills before 

concatenating their output features. Finally, the output features are relied on a classification layer for the final forecast. The proposed model 

produced enhanced results for binary and multiclass (four classes and eight classes) classification with 97.6% (40x), 95.5% (100x), 96.6 (200x) and 

95.9% (400x) accuracy for the eight classes experiment. The experimental results show that, when compared to state-of-the-art models, the 

proposed approach obtains the best BC multi-classification accuracy.  
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INTRODUCTION 
 
The whole human race is afflicted with terrible diseases, 
such as Breast Cancer (BC) in women. BC is reportedly 
the second most lethal kind of disease that affects 
women, according to the World Health Organization 
(WHO) (2014) and the latest report of 36 different 
malignancies, with recently diagnosed cases nearing a 
rate of 7.3% and a death rate of 6.9% (Sung et al., 2020. 
According to estimates, 90% of BC might be discovered  

 
 
 
 
and attended to by specialists in the initial phases and be 
cured (Sabtu et al., 2019). Hence, making a precise and 
prompt detection of this fatal illness is very essential to 
reduce the mortality rate. Medical imaging serves as a 
useful technique for identifying the presence of different 
medical disorders and evaluating research results. 
Biomedical imaging plays a critical role in the cancer 
treatment process. BC can be analyzed and  found  using  
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imaging modalities (Zhang et al.,2019) such as diagnostic 
mammography (X-rays), ultrasound (sonography), 
magnetic resonance imaging (MRI), and thermography. 
The suggested study makes use of ultrasound images. 
Effectively identifying and pinpointing cancerous cells in 
BC images is extremely challenging since cancerous 
cells have distinct sizes, forms, and positions. Diagnoses 
of a patient might have several result interpretations from 
a different pathologist. Research found that the 
diagnostic discrepancy between several examiners 
utilizing tissue samples was around 25% (Ukwuoma et 
al., 2022a; Ukwuoma et al., 2022b; Elmore et al., 2015). 
Histopathology images are typically utilized to diagnose 
BC (Veta et al., 2014). In recent times, several studies 
have proposed a variety of methods for the automated 
categorization of cells in BC diagnosis. Machine learning 
(ML) and deep learning (DL) are now being widely used 
to simplify the manual assessment of several diseases 
making it easier for pathologists (Budd et al., 2021; Umer  
et al., 2021). The core elements of modern deep learning 
models that are required for accurate and effective 
classification are image pre-processing and attribute 
extraction. The method used in deep learning is capable 
of recognizing characteristics by employing layers of 
neural networks. Medical diagnosis using Deep 
Convolution Neural Networks (DCNN) showed 
encouraging results (Ukwuoma et al., 2022), hence 
incorporating DCNN models into BC image analysis 
using histopathological images will fasten the rate of BC 
as well as an accurate method. In order to accurately 
classify breast cancer histopathology images utilizing 
publicly accessible datasets like BreakHis (Man et al., 
2020) and BACH (Pimkin et al., 2018) datasets, recent 
studies have deployed DCNN models (Ukwuoma et al., 
2022c; Ukwuoma et al., 2022d; Ukwuoma et al., 2022e) 
which are pre-trained on the ImageNet. Corresponding to 
this, the majority of studies of the BACH competition 
(Pimkin et al., 2018) used a single pre-trained model or a 
collection of pre-trained models to classify breast 
histopathology images into many categories. Despite 
ongoing research on breast cancer technologies, the 
feature extraction method used by the suggested models 
makes it difficult to correctly identify or categorize breast 
disorders. Also, several studies have been identified to 
have been conducted in the binary categorization of 
histopathological images. However, only a few methods, 
primarily based on four classes, have been presented for 
the multi-classification of histopathological images. These 
methods' classification accuracy was subpar since they 
solely took into account texture-based extracted 
characteristics. Additionally, the multiclass classification 
of breast cancer into eight classes is seldom discussed 
because of the striking similarities across the eight 
classes of breast cancers. It is a very difficult assignment 
to properly categorize breast cancer into eight classes 
because of the considerable commonality in the input 
images of various classes of the disease. 

 
 
 
Sequel to the identified research gap, this paper 
addresses the identified problems by proposing an 
accurate and enhanced deep learning feature extraction 
framework for breast cancer image multi-classification via 
two, four and eight classes. This study uses the publicly 
accessible BreakHis to offer an end-to-end hybrid 
ensemble model for BC multi-classification using an 
attention-based global second-order pooling network. 
The ensembling is done by introducing an attention-
based second-order pooling network in form of a 
convolutional layer to the single models to improve their 
non-linear modeling capabilities before concatenating 
their output features. Finally, the output features are 
based on a Softmax layer for prediction. In addition, we 
reviewed several pre-trained models (deep learning 
models) capabilities in breast cancer diagnosis, after 
which three models (DenseNet201, ResNet110 and 
Xception) were selected for our model building. We 
highlight the contribution of this manuscript thus; 
 

•We developed an Attention-based end-to-end hybrid 
ensemble model for BC Multi-classification. 

•This research introduced a spatial attention-based 
second-order pooling network for higher-order 
quantitative feature extraction, considering that pre-
trained models are based on first-order quantitative 
characteristics of the input images. In order to represent 
the spectral–structural information of breast cancer 
images, the first-order feature mechanism was carried 
out whereas a second-order pooling mechanism with an 
attention-based architecture is employed to simulate 
relevant and discriminatory characteristics 

•This research went ahead to present a comprehensive 
study of pre-trained models including binary classification 
and Multi-class (Four classes and Eight classes) of the 
proposed model. 
 
The rest of the manuscript is structured in the following 
manner: Section 2 examines previous research in the 
field, while Section 3 presents a brief summary of the 
proposed approach. Section 4 looks at the experimental 
outcomes, including performance assessment, 
discussion of results, and a comparison with the latest 
models. Lastly, Section 5 concludes the paper and 
explores possible avenues for future research. 

 
Related works 
 
Early detection and classification are crucial in reducing 
the death rate from breast cancer, which is the most 
commonly diagnosed cancer worldwide. Various deep-
learning techniques have been suggested for the 
automatic diagnosis and classification of breast cancer. 
One of these techniques is a six-branched CNN model 
proposed by Umer et al., (2022) which employs a deep 
feature fusion and selection method for multiclass breast  
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cancer classification. Histopathology images are used to 
diagnose breast cancer in the majority of cases (Veta et 
al., 2014b). With advancements in computer technology, 
artificial Intelligence techniques are being extensively 
used to automate the manual diagnosis of various 
diseases. Wang et al. (2021) introduced a deep feature 
fusion and enhanced routing-based automatic 
classification approach for breast cancer 
histopathological images. They developed a network with 
two parallel channels that can simultaneously obtain 
convolution features and capsule features. Yan et al. 
(2019) also proposed a hybrid technique of convolutional 
and recurrent deep neural networks for histopathological 
image classification.  

Identifying the computational expense as an obstacle to 
accurately categorizing cancer via convolutional neural 
networks, Albashishet al. (2021) proposed a transfer 
learning model that relied on the VGG 16-layer deep 
model architecture to obtain advanced features from the 
BreakHis benchmark histopathological image dataset, as 
a solution to this problem. Singh et al., (2021) used 
transfer learning techniques with VGG-19 as the base to 
classify imbalanced histopathological images. To help in 
the automatic identification and diagnosis of breast 
cancer, likewise, Arooj et al., (2022) also proposed a 
transfer learning technique based on a pre-trained 
AlexNet model. Wang et al., (2022) proposed a hybrid 
deep learning model for the automatic detection of 
cancer, in which different layers of CNN and GRU 
architecture were used. Aljuaid et al., (2022) proposed a 
new computer-aided diagnosis method for binary and 
multi-class breast cancer using a combination of ResNet 
18, ShuffleNet, and Inception-V3Net. Obtaining essential 
image features from breast histopathology images is 
typically done from the entire image, regardless of 
magnification. To overcome the challenge of selecting 
generic features, Ukwuoma et al. (2022f) introduced 
DEEP_Pachi, a model that is capable of classifying 
breast histopathology images at different magnifications. 
Nawaz et al., (2018) presented a deep-learning method 
for multi-class classification via CNN. The proposed 
method classifies tumors as benign or malignant, but the 
prediction is done in subclasses. Mi et al., (2021) 
proposed a two-stage architecture via a patch-level CNN 
and XGBoost as a WSI-level classifier. This method 
classifies H&E-stained digital pathology images of the 
breast into four categories. Maleika et al., (2021), 
combined a pre-trained model based on ResNet50 with 
an enhanced CNN to segment and classify various types 
of breast abnormalities. Handcrafted feature extraction 
methods were used by Joseph et al. (2022) and this was 
then used to train the deep neural Network. Their 
proposed techniques achieved an accuracy score of 
96.84% (400x). Zabitet al., (2022) used the pre-trained 
Xception model's six intermediate layers to obtain salient 
characteristics from input images. They optimized the  
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model on an unnormalized dataset before being tested 
on a normalized dataset. 
 
 
METHODOLOGY  
 
This section explores the proposed model in detail. 
Figure 1 shows the flowchart of the work done in this 
paper starting from the data acquisition to the evaluation 
of the train models. The first step is data splitting, 
followed by data augmentation of the train set. The work 
done is in sequential order s seen in (Figure 1). We 
examined 7 deep learning pre-trained model 
performances on the preprocessed data (DenseNet121, 
ResNet110, GoogleNet, Xception, EfficientNNetB3, 
ResNet110, InceptionResNetV2), followed by the 
selection of the networks for the proposed hybrid 
ensemble network. In this research, the DenseNet201, 
ResNet110 and the Xception model were used for the 
ensembling task. 
 
Proposed hybrid ensemble model 
 
First, the pre-trained architectures of choice were created 
to represent the spectral-spatial data of histopathology 
images of breast cancer. Second, discriminative and 
representative characteristics are modeled using an 
attention-based second-order pooling (ASP) operator. 
Since the selected pre-trained models used a first-order 
feature operator, we believed that their operators produce 
shallow future maps. Each model was expanded with an 
ASP operator before the concatenation layer to provide 
deeper features. The ASP is intended to derive from each 
model's first-order pooling (MaxPooling) by using the 
characteristics of the preceding convolutional layers as 
shown in (Figure 2). The modified models were 
DenseNet201, ResNet110 and Xception models as seen 
in (Figure 2). To reduce the scale dependency of the 
features from the prior layers of each selected Model, we 

included a  normalization (Ukwuoma et al., 2022d).  
Second-order pooling is computed by using the real 

symmetric matrix ; 
 

.        (1) 

 
Eq. 1 calculates the internal product of each column-raw 

scalar pair in . The relationship between the variables 
of the adjacent pixels is used to learn the attention mask 
thus; 
 

.     
                                                                           (2) 
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Figure 1: The Flowchart/Summary of the Proposed Architecture Starts from the Database/Data 
Acquisition to The Trained Model Evaluation and Comparison with The State-Of-The-Art Results. 
 

 

 
 
Figure 2: The Proposed Hybrid Ensemble Model. The Densenet201, Xception and ResNet110 Models were modified before 
concatenation of their output features after which a fully connected layer with SoftMax Classifier is employed for the Final Prediction. 
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Figure 3: A Depicts the Dense Block of The Implemented Densenet201. B Depicts the Attention 
Mechanism Used for Second-Order Pooling Which Is Spatial Attention. C Depicts the Graphical 
Representation of the ASP.  

 
 

Where  is the interchangeability of pixels 
that are next to one another in pairs. The trigonometric 
distance metric so determines how similar the 
surrounding pixels are to the core pixel; 

 

.    
                                                           (3) 
 

Where , signifies any adjacent 

pixel’s vector, denotes the diagonal matrix 

used to create  learning while designates the 
neighborhood’s center pixel vector. According to Eq. 4, 
the attention scores are standardized to a uniform value 
using the SoftMax function. 
 

,                  (4) 
 

 denotes the bias,  for  and a 

cross-weight matrix  can be gotten from eq. 

4. The final implemented attention-based second-order 
pooling is seen in Eq. 5 
 

         (5) 
 
In order to depict the second-order pooling, the ASP 
takes the characteristics from the last convolutional layer 
of the pre-trained models and adds a variety of nearby 
pixels using an information and learning weighting 
method. This suggests that while the impact of the pixels 
with lesser weights is muted, the pixels with bigger 
weights have a significant impact.  

The binary operations "⊗” and “ stand for elementwise 
multiplication and matrix multiplication, respectively. The 
letters "T" and "C" which stand for transpose and picking 
out the indicated pixel respectively are examples of unary 
operations while features/parameters are represented by 
the yellow boxes. The resulting features are then 
vectorized using a Frobenius normalizing layer and a 
feature extraction layer. After that, classification is 
performed using the final FC layer with SoftMax loss. It 
should be noted that because each component of the 
proposed hybrid ensemble model is differentiable, the 
entire network is an end-to-end deep learning model as 
shown in (Figure 3). 
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Implementation details 
 
In order to conduct this experiment, a desktop pc with a 
64-bit OS, an Intel(R) Core (TM) i5-8300H CPU clocked 
at 2.30GHz, 15.9 GB of useable RAM and an NVIDIA 
GEFORCE GTX-1050Ti, 4.0GB GPU were used. This 
work uses the open-source frameworks Keras and 
TensorFlow for implementation. The model 
hyperparameters include Adam optimizer, images size 
of 224 × 224, batch size = 4, epoch = 300. The data 
transformation function includes; horizontal flip = True, 
rescale = 1./255, rotation range=40, width shift 
range=0.2, height shift range=0.2, and shear range=0.2. 
The experiment's loss function is the categorical cross-
entropy. 
 
Materials 
 
This section explains the dataset, data preprocessing and 
the evaluation metrics used. The BreakHis (Man et al., 
2020) dataset with Binary class (Benign vs Malignant), 
Multiclass-4 classes which have two sets; set 1 
comprises Adenosis, Fibroadenoma, Phyllodes_tumor 
and Tubular_adenoma while set 2 comprises 
Ductal_carcinoma, Lobular_carcinoma, 
Mucinous_carcinoma, and Papillary_carcinoma and 
multiclass-8 classes which includes; Adenosis, 
Ductal_carcinoma, Fibroadenoma, Lobular_carcinoma, 
Mucinous_carcinoma, Phyllodes_tumor, 
Papillary_carcinoma and Tubular_adenoma is used for 
our experiment. 
 
BreakHis (Man et al., 2020) Dataset 
 
The Pathological Anatomy and Cytopathology (P&D) Lab 
in Brazil provided the database. Eighty-two individuals 
were diagnosed, producing malignant and benign 
microscopic images at various magnifications. Table 1 
shows the breakdown of the dataset which is visualized 
in (Figure 4). 
 

Dataset preprocessing 
 
The employed dataset was first split in the ratio of 
70:20:10 for the training, validation and test set. Only the 
train set was subjected to data augmentation using the 
python augmentor library to 1002 samples. The train sets 
were upsampled with the following transformations: 
cropping, random rotation, random flipping, skew, shear, 
zoom, etc.  
 
Evaluation metrics 
 
These are the metrics we employed; 
 
 

     (6) 

 
 
 

      (7) 

   (8) 

          (9) 

 

  (10) 

                      (11) 

 
RESULTS 
 
This section presents the results of all the experiments 
performed in this paper. Since our work is based on 
ensemble models, this section presents various 
experiments starting from the pre-trained model's 
experiment, to the modification of the selected models to 
the developed ensembled models. The developed 
ensemble model results are based on three scenarios; 
binary classification, four-class multi-classification 
(Benign classes and malignant classes) and lastly Eight 
class multiclass classification. 
 
Backbone selection and fine-tuned backbone 
experiment 
 
The backbone model selection experiments were done 
on different magnifications for both benign and malignant 
classes. Table 2 shows that the DenseNet architecture 
recorded superior performance among the other models 
in both benign and malignant classes, followed by the 
Xception Model, and the ResNet architectures. However, 
the ResNet architecture had equal metrics in some 
magnifications compared to the VGG16 and 
InceptionResNetV2 architecture. From (Table 2), we 
concluded that the DenseNet, ResNet and Xception 
architecture's performance led to their selection as the 
proposed hybrid ensemble model backbone. 

Table 3 summarizes the results of the modification 
experiments using the multiclass (four-classes) set. The 
results show that the selected models recorded a 0.01 - 
0.05 performance improvement in all magnifications and 
evaluation metrics. The DenseNet architecture, its best 
performance is at 40x magnification with 0.925 accuracy, 
0.844 sensitivity, 0.946 specificity, 0.855 precision,  
0.846F1_score and 0.895 AUC for the benign while the 
modified DenseNet architecture best performance is seen 
at the 100x magnification with an accuracy of 0.960, 
Sensitivity of 0.920, specificity of 0.973, precision of 
0.920, F1_score of 0.922and AUC of 0.951 for the benign 
class. For the Malignant class, the conventional 
DenseNet model's best performance was seen at 400x 
magnification with 0.913 (accuracy), 0.825(sensitivity), 
0.941  (specificity),  0.825  (precision),  0.825 ( F1_score) 
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Table 1: Breakdown of the BreaKHis dataset which includes the original partition, the splitting and the number of 
samples per split. 
 

Class Sub_Class 
Magnification 

Total Nos_Patients 
40x 100x 200x 400x 

Benign 

Adenosis 114 113 111 106 444 

24 
Fibroadenoma 253 260 264 237 1014 
Phyllodes_tumor 109 121 108 115 453 
Tubular_adenoma 149 150 140 130 569 

        

Malignant 

Ductal_carcinoma 864 903 896 788 3451 

58 
Lobular_carcinoma 156 170 163 137 626 
Mucinous_carcinoma 205 222 196 169 792 
Papillary_carcinoma 145 142 135 138 560 

        
Total  1995 2081 2013 1820 7090 82 

Augmented-Train 

Benign 

Adenosis 1002 1002 1002 1002 4008 

- 
Fibroadenoma 1002 1002 1002 1002 4008 
Phyllodes_tumor 1002 1002 1002 1002 4008 
Tubular_adenoma 1002 1002 1002 1002 4008 

        

Malignant 

Ductal_carcinoma 1002 1002 1002 1002 4008 

- 
Lobular_carcinoma 1002 1002 1002 1002 4008 
Mucinous_carcinoma 1002 1002 1002 1002 4008 
Papillary_carcinoma 1002 1002 1002 1002 4008 

Test 

Benign 

Adenosis 11 11 11 10 43 

- 
Fibroadenoma 25 25 26 23 99 
Phyllodes_tumor 10 12 10 11 43 
Tubular_adenoma 14 14 13 12 53 

        

Malignant 

Ductal_carcinoma 86 90 89 78 343 

- 
Lobular_carcinoma 15 16 16 13 60 
Mucinous_carcinoma 20 22 19 16 77 
Papillary_carcinoma 14 14 13 13 54 

Validation 

Benign 

Adenosis 98 98 98 98 392 

- 
Fibroadenoma 98 98 98 98 392 
Phyllodes_tumor 98 98 98 98 392 
Tubular_adenoma 98 98 98 98 392 

        

Malignant 

Ductal_carcinoma 98 98 98 98 392 

- 
Lobular_carcinoma 98 98 98 98 392 
Mucinous_carcinoma 98 98 98 98 392 
Papillary_carcinoma 98 98 98 98 392 

 
 
 
and 0.854(AUC) while for the modified DenseNet, the 
best malignant performance is seen at the 40x 
magnifications with an accuracy of 0.952, sensitivity of 
0.904, specificity of 0.968, precision of 0.904, F1_score 
of 0.904, and AUC of 0.909. For the ResNet architecture, 
both the conventional and modified recorded their best 
performance at the 100x magnification with 
0.911(Accuracy), 0.863(sensitivity), 0.943(specificity), 
0.823(precision), 0.828(F1_score), 0.903(AUC) against 
0.95(Accuracy), 0.910(sensitivity), 0.968(specificity), 

0.910(precision), 0.909(F1_score), 0.938(AUC) for the 
benign class while that of the malignant is seen at 40x 
magnification with 0.892(Accuracy), 0.785(sensitivity), 
0.928(specificity), 0.785(precision), 0.785(F1_score), 
0.806(AUC) against 0.922(Accuracy), 0.844(sensitivity), 
0.948(specificity), 0.844(precision), 0.844(F1_score), 
0.882(AUC). For the Xception model (Table 3), the 
conventional best performance for the benign class is 
seen at 400x magnification whereas the modified 
Xception is at 40x magnification with   an    accuracy   of  
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Figure 4: Sample Visualization of the BreaKHis (Man et al., 2020) Data. The Red Dash-Lines Indicate 
the Multiclass (8 Classes) Classification Labeled With 3, While the Blue-Dash Lines Indicate the Multi-
Class (4 Class) Classification Labeled With 2 and the Binary Classification Is the Images with The 
Green Dash-Lines Labeled 1.  

 
0.925, sensitivity of 0.850, specificity of 0.950, precision 
of 0.875, F1_score of 0.850, and AUC of 0.887 against 
0.893(Accuracy), 0.800(sensitivity), 0.929(specificity), 
0.786(precision), 0.788(F1_score), 0.863(AUC) for the 
conventional Xception. For the Malignant class, both the 
conventional and modified recorded their best 
performance at the 100x magnification with 
0.900(Accuracy), 0.800(sensitivity), 0.933(specificity), 
0.800(precision), 0.800(F1_score), 0.858(AUC) against 
0.922(Accuracy), 0.844(sensitivity), 0.948(specificity), 
0.844(precision), 0.844(F1_score), 0.868(AUC). The 
individual class performance for both the benign and 
malignant is also evaluated as shown in (Table 3). 
 
 
Attention-based end-to-end hybrid ensemble model 
experiment 
 
This section presents the result of the proposed model as 
recorded in (Table 4). For the binary classification, the 
40x magnification yielded the highest classification result 
with an accuracy of 0.979, sensitivity (0.981), specificity 
(0.981), precision (0.979), F1_score (0.976) and AUC 
(0.981) whereas the 200x magnification yielded the 
lowest classification result with an accuracy of 0.939, 
sensitivity (0.942), specificity (0.942), precision (0.939), 

F1_score (0.939) and AUC (0.941). The highest area 
(ROC) and AP is seen in the 40x magnification, followed 
by the 100x, 400x and lastly the 200x magnification. The 
model performs very well in the malignant class 
compared to the benign class.  

For four-class multi-classification on the Benign class, 
the highest model performance is seen at the 100x 
magnification with an accuracy of 0.968, sensitivity 
(0.952), specificity (0.978), precision (0.936), F1_score 
(0.942) and AUC (0.965) followed by 200x, 40x and lastly 
the 400x magnification. The malignant model's best 
performance is seen at 200x magnification with an 
accuracy of 0.956, sensitivity (0.912), specificity (0.970), 
precision (0.912), F1_score (0.912) and AUC (0.907) 
followed by 40x, 400x and lastly the 100x magnification. 
Likewise, the ROC and Precision-recall are used to 
evaluate the model's class performance. The Benign 
class had an area (ROC) above 90% in all magnifications 
with an area of 97% as the highest which is seen in 100x 
magnification. Although the AP results are poor 
compared to the ROC area, the Phyllodes_tumor, 
Adenosis and Tubular_adenoma all had an AP of 1.0 for 
40x, 100x and 200x magnification. Looking at the 
malignant Roc (area) and AP performance of each class, 
the benign experiment result is superior. The Ap result is 
indeed poor as some classes had an Ap below 0.5.  
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Table 2: Classification performance of the various models under different magnifications for the ensemble backbone model selection. AC= Accuracy, SE=Sensitivity, SP= 

Specificity, PR=Precision, F1_S=F1_score. 

 

 

40× Magnification 100× Magnification 200× Magnification 400× Magnification 

AC SE SP PR F1_S AUC AC SE SP PR F1_S AUC AC SE SP PR F1_S AUC AC SE SP PR F1_S AUC 

D
en

se
N

et
 Benign Benign Benign Benign 

0.925 0.844 0.946 0.855 0.846 0.895 0.919 0.839 0.946 0.857 0.839 0.885 0.883 0.795 0.922 0.794 0.777 0.858 0.902 0.804 0.935 0.815 0.803 0.863 

Malignant Malignant  Malignant Malignant 

0.904 0.807 0.936 0.807 0.807 0.819 0.863 0.725 0.908 0.725 0.725 0.784 0.887 0.774 0.925 0.774 0.699 0.804 0.913 0.825 0.941 0.825 0.825 0.854 

In
ce

p
ti

o
n
R

e

sN
et

 

Benign Benign Benign Benign 

0.883 0.767 0.922 0.770 0.767 0.835 0.863 0.729 0.909 0.737 0.728 0.814 0.875 0.764 0.916 0.757 0.755 0.838 0.839 0.679 0.892 0.679 0.679 0.763 

Malignant Malignant Malignant Malignant 

0.870 0.741 0.914 0.741 0.741 0.801 0.768 0.570 0.845 0.535 0.535 0.700 0.847 0.701 0.898 0.693 0.693 0.787 0.858 0.717 0.906 0.716 0.716 0.789 

In
ce

p
ti

o
n

V
3

 

Benign Benign Benign Benign 

0.858 0.735 0.906 0.716 0.721 0.818 0.863 0.748 0.909 0.730 0.737 0.826 0.842 0.722 0.894 0.683 0.687 0.808 0.866 0.732 0.911 0.732 0.732 0.817 

Malignant Malignant Malignant Malignant 

0.815 0.640 0.877 0.630 0.630 0.755 0.760 0.624 0.848 0.521 0.521 0.736 0.799 0.598 0.866 0.599 0.598 0.700 0.808 0.61 0.872 0.616 0.617 0.665 

R
es

N
et

 

Benign Benign Benign Benign 

0.883 0.766 0.922 0.767 0.767 0.834 0.911 0.863 0.943 0.823 0.828 0.903 0.883 0.798 0.922 0.783 0.777 0.860 0.875 0.75 0.917 0.751 0.75 0.817 

Malignant Malignant Malignant Malignant 

0.892 0.785 0.928 0.785 0.785 0.806 0.838 0.676 0.892 0.676 0.676 0.785 0.858 0.723 0.905 0.715 0.715 0.806 0.85 0.900 0.900 0.700 0.700 0.715 

V
G

G
1

6
 

Benign Benign Benign Benign 

0.883 0.766 0.922 0.810 0.767 0.837 0.839 0.713 0.888 0.742 0.687 0.800 0.808 0.659 0.869 0.617 0.627 0.764 0.902 0.804 0.935 0.821 0.800 0.864 

Malignant Malignant Malignant Malignant 

0.826 0.652 0.884 0.652 0.652 0.742 0.824 0.665 0.882 0.648 0.648 0.767 0.821 0.642 0.880 0.642 0.642 0.642 0.821 0.642 0.881 0.641 0.642 0.684 

X
ce

p
ti

o
n

 

Benign Benign Benign Benign 

0.892 0.783 0.928 0.813 0.796 0.850 0.887 0.786 0.925 0.774 0.774 0.855 0.891 0.806 0.928 0.787 0.783 0.866 0.893 0.800 0.929 0.786 0.788 0.863 

Malignant Malignant Malignant Malignant 

0.900 0.800 0.933 0.800 0.800 0.858 0.856 0.742 0.904 0.711 0.711 0.822 0.858 0.715 0.905 0.715 0.715 0.789 0.871 0.742 0.914 0.742 0.742 0.820 

 
Table 3. Performance of the Finetuned Models (Densenet, Resnet and Xception). AC= Accuracy, SE=Sensitivity, SP= Specificity, PR=Precision, F1_S=F1_score, Ad=Adenosis, 

Fi=Fibroadenoma, Phy=Phyllodes_Tumor,Tu=Tubular_Adenoma, Dc=Ductal_Carcinoma,Lc=Lobular_Carcinoma, Mc=Mucinous_CarcinomaandPc=Papillary_Carcinoma 

 

 
40× Magnification 100× Magnification 200× Magnification 400× Magnification 

AC SE SP PR F1_S AUC AC SE SP PR F1_S AUC AC SE SP PR F1_S AUC AC SE SP PR F1_S AUC 

D
en

se
N

et
 

Benign Benign Benign Benign 

0.925 0.850 0.941 0.886 0.850 0.882 0.960 0.920 0.973 0.920 0.922 0.951 0.933 0.867 0.960 0.873 0.870 0.910 0.938 0.875 0.955 0.887 0.875 0.910 

Malignant Malignant  Malignant Malignant 

0.952 0.904 0.968 0.904 0.904 0.909 0.898 0.796 0.932 0.796 0.796 0.810 0.945 0.891 0.964 0.901 0.890 0.880 0.938 0.875 0.958 0.875 0.875 0.864 

R
es

N
et

 

Benign Benign Benign Benign 

0.925 0.850 0.950 0.910 0.859 0.886 0.95 0.910 0.968 0.910 0.909 0.938 0.933 0.894 0.956 0.867 0.872 0.925 0.920 0.839 0.946 0.847 0.840 0.884 

Malignant Malignant Malignant Malignant 

0.922 0.844 0.948 0.844 0.844 0.882 0.863 0.725 0.908 0.725 0.725 0.766 0.916 0.832 0.944 0.832 0.832 0.866 0.917 0.833 0.944 0.833 0.833 0.830 
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Table 3 

X
ce

p
ti

o
n

 

Benign Benign Benign Benign 

0.925 0.850 0.950 0.875 0.850 0.887 0.911 0.835 0.941 0.827 0.825 0.886 0.867 0.768 0.911 0.733 0.742 0.837 0.911 0.821 0.940 0.837 0.821 0.865 

Malignant Malignant Malignant Malignant 

0.922 0.844 0.948 0.844 0.844 0.868 0.873 0.746 0.915 0.746 0.746 0.753 0.920 0.839 0.946 0.839 0.839 0.867 0.892 0.794 0.928 0.783 0.783 0.850 

D
en

se
N

et
 

Benign – Class Performance 

Metrics Ad Fi Phy Tu Ad Fi Phy Tu Ad Fi Phy Tu Ad Fi Phy Tu 

Accuracy 0.967 0.883 0.950 0.900 0.984 0.935 0.968 0.952 0.967 0.883 0.883 1.00 0.946 0.929 0.911 0.964 

Precision 0.909 0.800 1.00 0.833 1.00 0.957 0.857 0.867 1.0 0.88 0.615 1.00 1.0 0.88 0.75 0.917 

Sensitivity 0.909 0.960 0.700 0.714 0.909 0.880 1.00 0.929 0.818 0.846 0.800 1.00 0.700 0.957 0.818 0.917 

Malignant - Class Performance 

Metrics Dc Lc Mc Pc Dc Lc Mc Pc Dc Lc Mc Pc Dc Lc Mc Pc 

Accuracy 0.919 0.985 0.956 0.948 0.838 0.887 0.908 0.958 0.891 0.942 0.956 0.993 0.892 0.942 0.950 0.966 

Precision 0.931 0.882 0.850 0.818 0.860 0.50 0.696 0.833 0.885 0.786 0.933 1.00 0.892 0.750 0.917 0.846 

Sensitivity 0.942 1.00 0.850 0.643 0.889 0.438 0.727 0.714 0.955 0.688 0.737 0.923 0.949 0.692 0.688 0.846 

 
 
Table 3 

R
es

N
et

 

Benign – Class Performance 

Metrics Ad Fi Phy Tu Ad Fi Phy Tu Ad Fi Phy Tu Ad Fi Phy Tu 

Accuracy 0.983 0.850 0.983 0.883 1.00 0.919 0.951 0.935 0.983 0.883 0.933 0.933 0.946 0.893 0.893 0.946 

Precision 1.00 0.750 1.00 0.889 1.00 0.917 0.909 0.812 1.00 0.952 0.75 0.765 0.769 0.840 0.778 1.00 

Sensitivity 0.909 0.960 0.900 0.571 1.0 0.880 0.833 0.929 0.909 0.769 0.900 1.00 1.00 0.913 0.636 0.750 

Malignant - Class Performance 

Metrics Dc Lc Mc Pc Dc Lc Mc Pc Dc Lc Mc Pc Dc Lc Mc Pc 

Accuracy 0.881 0.933 0.941 0.933 0.754 0.859 0.915 0.923 0.847 0.920 0.956 0.942 0.850 0.933 0.950 0.933 

Precision 0.938 0.650 0.833 0.647 0.816 0.389 0.750 0.588 0.905 0.667 0.810 0.647 0.866 0.727 0.917 0.667 

Sensitivity 0.872 0.867 0.750 0.786 0.789 0.438 0.682 0.714 0.854 0.625 0.895 0.846 0.910 0.615 0.688 0.769 

X
ce

p
ti

o
n

  

Benign – Class Performance 

Metrics Ad Fi Phy Tu Ad Fi Phy Tu Ad Fi Phy Tu Ad Fi Phy Tu 

Accuracy 0.933 0.866 0.950 0.950 0.951 0.855 0.919 0.919 0.933 0.750 0.883 0.900 0.929 0.857 0.893 0.964 

Precision 0.888 0.793 0.818 1.00 0.833 0.833 0.733 0.909 0.769 0.762 0.636 0.733 0.875 0.778 0.778 0.917 

Sensitivity 0.727 0.920 0.900 0.786 0.909 0.800 0.917 0.714 0.909 0.615 0.700 0.846 0.700 0.913 0.636 0.917 

Malignant - Class Performance 

Metrics Dc Lc Mc Pc Dc Lc Mc Pc Dc Lc Mc Pc Dc Lc Mc Pc 

Accuracy 0.859 0.926 0.948 0.956 0.775 0.866 0.923 0.930 0.847 0.927 0.920 0.985 0.783 0.933 0.883 0.967 

Precision 0.904 0.647 0.783 0.833 0.802 0.412 0.867 0.643 0.886 0.650 0.750 0.923 0.871 0.631 0.556 0.846 

Sensitivity 0.872 0.733 0.900 0.714 0.856 0.438 0.591 0.643 0.876 0.813 0.632 0.923 0.782 0.923 0.625 0.846 
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Table 4: Performance of The Proposed End-End Hybrid Ensemble Model. Ac = Accuracy, Se=Sensitivity, SP= Specificity, PR=Precision, F1_S=F1_score, Ad=Adenosis,, 

Fi=Fibroadenoma, Phy=Phyllodes_Tumor,Tu=Tubular_Adenoma, Dc=Ductal_Carcinoma,Lc=Lobular_Carcinoma, Mc=Mucinous_CarcinomaandPc=Papillary_Carcinoma 

 

 

40× Magnification 100× Magnification 200× Magnification 400× Magnification 

AC SE SP PR F1_S AUC AC SE SP PR F1_S AUC AC SE SP PR F1_S AUC AC SE SP PR F1_S AUC 

Two Classes 

0.979 0.981 0.981 0.979 0.976 0.981 0.957 0.957 0.957 0.957 0.957 0.947 0.939 0.942 0.942 0.939 0.939 0.942 0.950 0.950 0.950 0.950 0.950 0.950 

Eight Classes 

0.976 0.903 0.986 0.903 0.903 0.938 0.955 0.819 0.974 0.819 0.819 0.878 0.966 0.863 0.980 0.863 0.863 0.907 0.959 0.835 0.976 0.850 0.835 0.886 

F
o

u
r 

C
la

ss
es

 Benign Benign Benign Benign 

0.933 0.867 0.956 0.889 0.874 0.906 0.968 0.952 0.978 0.936 0.942 0.965 0.942 0.891 0.961 0.883 0.883 0.926 0.929 0.857 0.952 0.915 0.858 0.886 

Malignant Malignant Malignant Malignant 

0.937 0.874 0.958 0.874 0.797 0.880 0.887 0.775 0.925 0.775 0.775 0.828 0.956 0.912 0.970 0.912 0.912 0.907 0.921 0.842 0.947 0.842 0.842 0.850 

T
w

o
 C

la
ss

es
 

Receiver Operating Characteristics (ROC) 

Mi-A Ma-A Benign Malignant Mi-A Ma-A Benign Malignant Mi-A Ma-A Benign Malignant Mi-A Ma-A Benign Malignant 

0.98 0.98 0.98 0.98 0.96 0.95 0.95 0.95 0.94 0.94 0.94 0.94 0.95 0.95 0.95 0.95 

Precision-Recall Curve (AP) 

Mi-A Benign Malignant Mi-A Benign Malignant Mi-A Benign Malignant Mi-A Benign Malignant 

0.97 0.94 0.99 0.94 0.89 0.96 0.91 0.84 0.96 0.93 0.87 0.96 

Table 4. 

F
o

u
r 

C
la

ss
e

s 

Benign - Receiver Operating Characteristics (ROC) 

Mi-A Ma-A Ad Fi Phy Tu Mi-A Ma-A Ad Fi Phy Tu Mi-A Ma-A Ad Fi Phy Tu Mi-A Ma-A Ad Fi Phy Tu 

0.91 0.91 0.90 0.89 1.00 0.84 0.96 0.97 1.00 0.93 0.98 0.95 0.92 0.93 0.90 0.89 0.91 1.00 0.90 0.89 0.94 0.87 0.82 0.92 

Benign - Precision-Recall Curve (AP) 

Mi-A Ad Fi Phy Tu Mi-A Ad Fi Phy Tu Mi-A Ad Fi Phy Tu Mi-A Ad Fi Phy Tu 

0.78 0.77 0.79 1.00 0.66 0.89 1.00 0.89 0.86 0.88 0.81 0.77 0.84 0.64 1.00 0.77 0.83 0.74 0.71 0.87 

Malignant - Receiver Operating Characteristics (ROC) 

Mi-A Ma-A Dc Lc Mc Pc Mi-A Ma-A Dc Lc Mc Pc Mi-A Ma-A Dc Lc Mc Pc Mi-A Ma-A Dc Lc Mc Pc 

0.92 0.86 0.90 0.92 0.88 0.74 0.85 0.83 0.80 0.78 0.91 0.83 0.94 0.90 0.91 0.80 0.95 0.95 0.89 0.85 0.83 0.88 0.82 0.88 

Malignant - Precision-Recall Curve (AP) 

Mi-A Dc Lc Mc Pc Mi-A Dc Lc Mc Pc Mi-A Dc Lc Mc Pc Mi-A Dc Lc Mc Pc 

0.80 0.90 0.77 0.64 0.44 0.66 0.83 0.37 0.70 0.42 0.85 0.92 0.56 0.91 0.75 0.75 0.85 0.67 0.51 0.67 

Table 4 

E
ig

h
t 

C
la

ss
es

 

ROC Mi-A Ma-A Ad Dc Fi Lc Mc Pc Phy Ta ROC Mi-A Ma-A Ad Dc Fi Lc Mc Pc Phy Ta 

40× 

Magnification 
0.94 0.93 0.95 0.94 0.99 0.96 0.92 0.81 1.00 0.88 

100× 

Magnification 
0.90 0.88 0.95 0.88 0.89 0.83 0.85 0.78 0.95 0.88 

200× 

Magnification 
0.92 0.90 0.91 0.94 0.86 0.77 0.81 0.99 0.94 0.99 

400× 

Magnification 
0.91 0.89 0.95 0.88 0.93 0.76 0.87 0.88 0.91 0.92 

PR/AP Mi-A Ad Dc Fi Lc Mc Pc Phy Ta PR/AP Mi-A Ad Dc Fi Lc Mc Pc Phy Ta 

40× 

Magnification 
0.83 0.91 0.91 0.93 0.77 0.74 0.51 1.00 0.63 

100× 

Magnification 
0.69 0.91 0.81 0.75 0.47 0.61 0.44 0.73 0.55 

200× 

Magnification 
0.76 0.75 0.88 0.70 0.46 0.62 0.81 0.58 0.87 

400× 

Magnification 
0.72 0.82 0.80 0.67 0.38 0.67 0.66 0.83 0.84 
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Table 5: Class Performance of The Proposed End-To-End Hybrid Ensemble Model Using Accuracy, Sensitivity, Specificity, Precision, F1_scorein All Magnifications. 

Ad=Adenosis, Fi=Fibroadenoma, Phy=Phyllodes_Tumor,Ta=Tubular_Adenoma, Dc=Ductal_Carcinoma,Lc=Lobular_Carcinoma, Mc=Mucinous_Carcinomaand 

Pc=Papillary_Carcinoma. 

 

T
w

o
 C

la
ss

es
 

Metrics 
40× Magnification 100× Magnification 200× Magnification 400× Magnification 

Benign Malignant Benign Malignant Benign Malignant Benign Malignant 

Accuracy 0.979 0.979 0.957 0.957 0.939 0.939 0.950 0.950 

AUC 0.981 0.981 0.947 0.947 0.942 0.942 0.950 0.950 

F1_score 0.967 0.985 0.929 0.969 0.905 0.955 0.924 0.963 

Precision 0.952 0.992 0.937 0.965 0.864 0.977 0.902 0.975 

Specificity  0.978 0.983 0.972 0.922 0.934 0.95 0.951 0.948 

Sensitivity 0.983 0.978 0.922 0.972 0.95 0.934 0.948 0.951 

F
o

u
r 

C
la

ss
es

  

Benign – Class Performance 

Metrics Ad Fi Phy Tu Ad Fi Phy Tu Ad Fi Phy Tu Ad Fi Phy Tu 

Accuracy 0.950 0.883 1.00 0.900 1.00 0.935 0.968 0.968 0.950 0.900 0.917 1.00 0.964 0.857 0.929 0.964 

AUC 0.899 0.889 1.00 0.835 1.00 0.926 0.980 0.954 0.899 0.894 0.910 1.00 0.939 0.872 0.818 0.917 

F1_score 0.857 0.867 1.00 0.769 1.00 0.917 0.923 0.929 0.857 0.880 0.782 1.00 0.900 0.846 0.778 0.909 

Precision 0.900 0.821 1.00 0.833 1.00 0.957 0.857 0.929 0.900 0.917 0.692 1.00 0.900 0.757 1.00 1.00 

Specificity 0.980 0.857 1.00 0.957 1.00 0.973 0.960 0.979 0.980 0.941 0.920 1.00 0.978 0.788 1.00 1.00 

Sensitivity 0.818 0.920 1.00 0.714 1.00 0.880 1.00 0.929 0.818 0.846 0.900 1.00 0.900 0.957 0.636 0.833 

Malignant - Class Performance 

Metrics Dc Lc Mc Pc Dc Lc Mc Pc Dc Lc Mc Pc Dc Lc Mc Pc 

Accuracy 0.911 0.970 0.933 0.933 0.796 0.894 0.944 0.915 0.927 0.942 0.985 0.971 0.850 0.958 0.917 0.958 

AUC 0.895 0.925 0.878 0.742 0.798 0.777 0.911 0.826 0.910 0.804 0.947 0.949 0.830 0.875 0.820 0.875 

F1_score 0.932 0.867 0.780 0.609 0.830 0.571 0.826 0.625 0.945 0.714 0.944 0.857 0.886 0.800 0.688 0.800 

Precision 0.911 0.867 0.762 0.778 0.877 0.526 0.792 0.555 0.925 0.833 1.00 0.800 0.875 0.833 0.688 0.833 

Specificity 0.837 0.983 0.957 0.983 0.808 0.929 0.958 0.938 0.854 0.983 1.00 0.976 0.762 0.981 0.952 0.981 

Sensitivity 0.953 0.866 0.800 0.500 0.789 0.625 0.864 0.714 0.966 0.625 0.895 0.923 0.897 0.769 0.688 0.769 

 

Table 5 

E
ig

h
t 

C
la

ss
es

 

Magnificatio

n 
Metrics Ad Dc Fi Lc Mc Pc Phy Ta 

Magnificatio

n 
Ad Dc Fi Lc Mc Pc Phy Ta 

40× 

Accuracy 0.995 0.944 0.990 0.979 0.969 0.959 1.00 0.969 

100× 

0.995 0.882 0.966 0.946 0.951 0.956 0.980 0.961 

AUC 0.955 0.942 0.994 0.958 0.916 0.813 1.00 0.885 0.955 0.883 0.894 0.828 0.853 0.778 0.951 0.880 

F1_score 0.952 0.936 0.962 0.875 0.85 0.692 1.00 0.786 0.952 0.870 0.851 0.666 0.762 0.64 0.846 0.733 

Precision 1.00 0.941 0.926 0.824 0.85 0.75 1.00 0.786 1.00 0.851 0.909 0.647 0.8 0.727 0.786 0.688 

Specificity 1.00 0.954 0.988 0.983 0.983 0.983 1.00 0.983 1.00 0.877 0.989 0.968 0.978 0.984 0.984 0.974 

Sensitivity 0.909 0.930 1.00 0.933 0.850 0.643 1.00 0.786 0.909 0.889 0.800 0.688 0.727 0.571 0.917 0.786 

200× 

Accuracy 0.985 0.934 0.954 0.949 0.959 0.985 0.970 0.990 

400× 

0.989 0.881 0.943 0.943 0.966 0.972 0.989 0.989 

AUC 0.906 0.937 0.860 0.773 0.813 0.992 0.937 0.995 0.947 0.881 0.930 0.757 0.869 0.878 0.909 0.916 

F1_score 0.857 0.930 0.809 0.643 0.750 0.897 0.750 0.929 0.900 0.868 0.808 0.583 0.800 0.800 0.900 0.909 

Precision 0.900 0.896 0.905 0.750 0.923 0.813 0.643 0.867 0.900 0.852 0.724 0.636 0.857 0.833 1.00 1.00 

Specificity 0.995 0.907 0.988 0.983 0.994 0.983 0.973 0.989 0.994 0.878 0.9478 0.975 0.988 0.988 1.00 1.00 

Sensitivity 0.818 0.966 0.731 0.563 0.632 1.00 0.900 1.00 0.900 0.885 0.913 0.538 0.750 0.769 0.818 0.833 
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For Eight-class multi-classification, the lowest 

result was seen at the 100x magnification with an 
accuracy of 0.955, sensitivity (0.819), specificity 
(0.974), precision (0.819), F1_score (0.819) and 
AUC (0.878) whereas the highest performance is 
seen at the 40x magnification with an accuracy of 
0.976, sensitivity (0.903), specificity (0.986), 
precision (0.903), F1_score (0.903) and AUC 
(0.938). The AUC and AP are used to evaluate 
the 8-classes multi-classification of the proposed 
model. The 40x magnification result is the best for 
both area (AUC) and AP. Since the BreakHis 
dataset used has a huge class imbalance, we 
carried out a class evaluation of each 
classification scenario as seen in (Table 5). For 
the Binary techniques, the results of the malignant 
supersede that of the benign in all magnifications 
thus showing that the proposed model can detect 
images from classes with less data augmentation. 
The four-class benign multi-classification 
illustrates that our model performance on the 
Adenosis and Phyllodes_tumor have superior 
results in all magnifications whereas, the 
Mucinous_carcinoma and Papillary_carcinoma 
class recorded the best for malignant. The eight 
classes experiment shows that the proposed 
model is adequate for a multi-classification task 
with a huge data sample. We graphically illustrate 
the class performance of all the experiments in 
terms of accuracy as shown in (Figure 5a) 
denoting Eight classes experiment, 5(b) and 5(c) 
denoting four classes experiment and 5(d) 
denoting the binary experiment. Figures 6 - 9 
summaries the performance of the proposed 
model using the confusion metrics evaluation.  
 
DISCUSSION 
 
Since the inception of deep learning techniques, it 

has been much easier to extract discriminative 
breast cancer features from high-resolution 
images. From our literature survey, we noticed 
that binary classification is prominent in research 
via breast cancer classification where models are 
developed to classify breast liaison as benign or 
malignant. Furthermore, researchers who 
engaged in multi-class classification mainly 
focused on the four class classifications which are 
Adenosis, Fibroadenoma, Phyllodes_tumor, and 
Tubular_adenoma for the benign set or 
Ductal_carcinoma, Lobular_carcinoma, 
Mucinous_carcinoma, Papillary_carcinoma for the 
malignant set based on the BreakHis data. Rarely 
is the eight-class multi-class classification of 
breast cancer discussed due to its low 
classification accuracy and rectified receptive 
field. However, this can besolved by using a 
variety of techniques, including ensemble models, 
CNN models with various receptive fields, 
extraction of features and fusion, attention 
mechanisms, and more which is the key objective 
of this study. 

The proposed model performed very well via the 
binary classification with its optimal performance 
at 40x magnification with an accuracy of 0.979, 
sensitivity (0.981), specificity (0.981), precision 
(0.979), F1_score (0.976) and AUC (0.981). 
Comparing the class performance, the malignant 
was very much detected by the proposed model. 
This is linked to the fact that fewer images were 
generated for the malignant class as the class had 
bigger samples of the original samples compared 
to the benign class. This can also be traced to the 
multi-classification performance of the model 
using the four classes. The model performance is 
outstanding for the classes with large original 
samples than that of the augmented classes. For 
the Benign class, the100x magnification had the 

best performance with an accuracy of 0.968, 
sensitivity (0.952), specificity (0.978), precision 
(0.936), F1_score (0.942) and AUC (0.965) 
whereas the 200x magnification yielded the best 
for the malignant class with an accuracy of 0.956, 
sensitivity (0.912), specificity (0.970), precision 
(0.912), F1_score (0.912) and AUC (0.907). In 
support of the claims that the model performed 
very well on the original images than the 
augmented images, taking a look at (Table 1) and 
multi-classification (Eight class), we can see that 
the individual classes that had fewer augmented 
images all had an accuracy, sensitivity, specificity, 
precision of 1.0. This led to the future work of this 
study; augmenting the images using different 
generative models and running an analysis using 
our proposed model.  

 
Comparison with state-of-the-art results 
 
The result comparison is based on the networks 
that made use of the same BreakHis (Man et al., 
2020) dataset for a fair comparison as shown in 
(Table 6). We focused more on recently published 
papers since technically their result and approach 
are state-of-the-art. For Binary classification, 
Authors like Chattopadhyay et al. (2022) proposed 
the DRDA-Net7 model (DRDA-Net, which stands 
for residual dual-shuffle attention network, is a 
dual-shuffle attention-guided deep learning model 
that improves the model's capacity to recognize 
intricate patterns in images. It was inspired by the 
bottleneck unit of the ShuffleNet design), Sharma 
and Kumar et al. (Sharma and Kumar, 2022 used 
the Xception model and SVM classifier and Liu et 
al. (2022) employed Autoencoder and Siamese 
Network for binary classification. Although the 
recorded results are promising, the result of Liu et 
al. (2022) exhibited more reliability among them
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Figure 5: Graphically Illustration of The Class Performance (Accuracy) On The 3-Classification 
Scenario (Eight Classes, Four Classes-Benign and Malignant and The Binary Classes) Using the 
Proposed Model. 
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Figure 6. Eight Classes Experiment Confusion Matrix on All Magnifications. P/A Denotes Predicted 
and Actual. A = Adenosis, B = Fibroadenoma, C = Phyllodes_Tumor, D = Tubular_Adenoma, E = 
Ductal_Carcinoma, F = Lobular_Carcinoma, G = Mucinous_Carcinoma and H = Papillary_Carcinoma 
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Figure 7: Four Classes Experiment (Benign) Confusion Matrix on All Magnifications. P/A Denotes Predicted 
and Actual. A = Adenosis, B = Fibroadenoma, C = Phyllodes_Tumor, D = Tubular_Adenoma. 

 
 
with an accuracy of 97.3% for 40x, 96.1% for 100x, 
97.8% for 200x, and 96.7% for 400x magnification 
respectively. Saini and Susan (2022) and Sharma et al., 
(2020) employed the VGG16 via multi-classification of 
Breast Cancer using the BreakHis Pimkin et al., (2018). 

Specifically, Saini and Susan (2022) proposed the 
VGGIN-Net in two scenarios; Finetuned and non-
finetuned. The VGG16 pre-trained model's layers up to 
the block 4 pool layer were frozen and concatenated to 
create the VGGIN-Net, which  also  included  a  nonlinear  
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Figure 8: Four Classes Experiment (Malignant) Confusion Metrics on All Magnifications. P/A Denotes 
Predicted and Actual. A = Ductal_Carcinoma, B = Lobular_Carcinoma, C = Mucinous_Carcinoma, D = 
Papillary_Carcinoma 
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Figure 9: Binary Experiment Confusion Metrics on All Magnifications. 
P/A Denotes Predicted and Actual. A = Benign and B = Malignant. 

 
 
 

Table 6: Summary of the state-of-the-art results against the proposed model. 
 

Ref/Year Approach Class 
Magnification 

Merge 40x 100x 200x 400x 

Chattopadhyay et al. [32] 2022 DRDA-Net7 model Binary - 96.10 96.03 96.08 96.02 
Sharma and Kumar et al. [33] 2022 Xception model and SVM classifier Binary - 96.25 96.25 95.74 94.11 
Liu et al. [34] 2022 AE + Siamese Network Binary - 97.3 96.1 97.8 96.7 

Saini et al., [35] 2022 
VGGIN-Net 

Four 
- 96.21 97.44 96.22 93.49 

Finetuned VGGIN-Net - 97.56 96.89 97.49 94.21 

Sharma et al., [36] 2020 
VGG16 + Linear SVM (Patch Based) 

Four 
- 93.97 92.92 91.23 91.79 

VGG16 + Linear SVM (Patient Based) - 93.25 91.87 91.5 92.31 

Umer et al., [37] 2022 

ResNet50 + ESKNN 

Eight 

80.10 - - - - 

ResNet50 + ESD 69.40 - - - - 

6B-Net + ESKNN 82.03 - - - - 

6B-Net + ESD 70.43 - - - - 

Fused + ESKNN 87.90 - - - - 

Fused + ESD 74.30 - - - - 

F-Selected + ESKNN 90.10 - - - - 

F-Selected + ESD 75.60 - - - - 

Ameh et al., [38] 2022 

HF + DNN (100) augmented 

Eight 

- 97.24 96.62 95.44 96.29 
HF + DNN (400) augmented - 97.89 97.6 96.10 96.84 

HF + DNN (400) - 90.87 89.57 91.58 88.67 

HF + DNN (1000) - 90.01 88.35 92.95 89.54 

Sharma et al., [39] 2020 CNN + Pooling Strategy Eight - 80.76 76.58 79.90 74.21 
Asare [40] 2020 Self-Training and Self-Paced Learning Eight - 94.57 94.25 95.1 94.47 
Boumaraf et al. [41] 2021 Transfer Learning (ResNet) Eight 92.15 94.49 93.27 91.29 89.56 
Ours Proposed Eight  97.6 95.5 96.6 95.9 

 

 
mapping rudimentary Inception block unit (at the higher 
level), achieving a classification accuracy of 97.56% for 
40x, 96.89% for 100x, 97.49% for 200x, and 94.21% for 
400x using the finetuned approach and 96.21% for 40x, 
97.44% for 100x, 96.22% for 200x, 93.49% for 400x 

magnification respectively without finetuning. On the 
other hand, Sharma et al., (2020) used a linear SVM as a 
classifier and VGG16 as a feature extractor via a patch-
based approach. However, their results were poor 
compared to that of Saini and Susan (2022).  
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An observation is made via the eight classes' multi-

classification. Only a few researchers tend to tackle this 
issue due to the low accuracy performance of models. 
However, notable authors have come up with improved 
models that were able to give higher accuracy. A unique 
6BNet featuring six continuous nodes and various 
receptive fields is proposed by Umer et al. (2022). Among 
all the approaches recorded, the F-selected +ESKNN 
approach recorded the highest accuracy of 90.10%. 
Ameh et al., (2022) on the other hand, employed four 
different approaches which the HF (handcrafted features) 
+ DNN (400) augmented approach recorded the highest 
accuracy with 97.89% for 40x, 97.6% for 100x, 96.10% 
for 200x, and 96.84% for 400x magnifications. Sharma et 
al., [39] proposed the use of CNN + Pooling Strategy, 
Asare (2020) proposed the use of Self-Training and Self-
Paced Learning whereas Boumaraf et al. (2021) 
suggested the use of Transfer learning (ResNet) Which is 
based on a block-wise fine-tuning strategy. Asare (2020) 
contribution is based on a semi-supervised learning 
technique that generates and chooses pseudolabeled 
samples for categorizing breast cancer histopathology 
images while including self-training and identity learning. 
In summary, our proposed model result demonstrated 
superiority over all the discussed models in all 
experiments (Binary, Multi-classification). 
 
Conclusion 
 
This study proposes an end-to-end hybrid ensemble 
model for the multi-classification of BC based on the 
attention mechanism and global second-order pooling. 
The enhancement of deep learning pre-trained models is 
the foundation of the suggested model. Following the 
choice of the suggested ensemble model, six pre-trained 
models were thoroughly evaluated, and the DenseNet, 
ResNet, and Xception architectures were chosen. 
BreaKHis dataset is used for the experiment. The 
proposed model is utilized for binary classification as well 
as multi-classification (four classes and eight classes). 
The best accuracy for classifying BC was attained, with 
97.9% for binary classification, 96.8% for benign multi-
classification, 95.6% for malignant multi-classification, 
and 97.9% for eight-class classifications. According to the 
testing findings, the magnifications of 40x, 100x, 200x, 
and 40x yield the maximum accuracy. To expand the  
functionality of our model and increase the accuracy of 
BC diagnosis, we intend to investigate a variety of data 
augmentation strategies in the future, such as GAN for 
augmenting training samples. 
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